BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 27734896)

  • 1. 3Disease Browser: A Web server for integrating 3D genome and disease-associated chromosome rearrangement data.
    Li R; Liu Y; Li T; Li C
    Sci Rep; 2016 Oct; 6():34651. PubMed ID: 27734896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D genome and its disorganization in diseases.
    Li R; Liu Y; Hou Y; Gan J; Wu P; Li C
    Cell Biol Toxicol; 2018 Oct; 34(5):351-365. PubMed ID: 29796744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data.
    Oluwadare O; Zhang Y; Cheng J
    BMC Genomics; 2018 Feb; 19(1):161. PubMed ID: 29471801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosome3D: reconstructing three-dimensional chromosomal structures from Hi-C interaction frequency data using distance geometry simulated annealing.
    Adhikari B; Trieu T; Cheng J
    BMC Genomics; 2016 Nov; 17(1):886. PubMed ID: 27821047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GFFview: A Web Server for Parsing and Visualizing Annotation Information of Eukaryotic Genome.
    Deng F; Chen SY; Wu ZL; Hu Y; Jia X; Lai SJ
    J Comput Biol; 2017 Oct; 24(10):1060-1064. PubMed ID: 28355123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LocExpress: a web server for efficiently estimating expression of novel transcripts.
    Hou M; Tian F; Jiang S; Kong L; Yang D; Gao G
    BMC Genomics; 2016 Dec; 17(Suppl 13):1023. PubMed ID: 28155723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 3D Genome Browser: a web-based browser for visualizing 3D genome organization and long-range chromatin interactions.
    Wang Y; Song F; Zhang B; Zhang L; Xu J; Kuang D; Li D; Choudhary MNK; Li Y; Hu M; Hardison R; Wang T; Yue F
    Genome Biol; 2018 Oct; 19(1):151. PubMed ID: 30286773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manifold Based Optimization for Single-Cell 3D Genome Reconstruction.
    Paulsen J; Gramstad O; Collas P
    PLoS Comput Biol; 2015 Aug; 11(8):e1004396. PubMed ID: 26262780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Looking for Broken TAD Boundaries and Changes on DNA Interactions: Clinical Guide to 3D Chromatin Change Analysis in Complex Chromosomal Rearrangements and Chromothripsis.
    Yauy K; Gatinois V; Guignard T; Sati S; Puechberty J; Gaillard JB; Schneider A; Pellestor F
    Methods Mol Biol; 2018; 1769():353-361. PubMed ID: 29564835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromothripsis Detection and Characterization Using the CTLPScanner Web Server.
    Yang J; Liu B; Cai H
    Methods Mol Biol; 2018; 1769():265-278. PubMed ID: 29564830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A low-latency, big database system and browser for storage, querying and visualization of 3D genomic data.
    Butyaev A; Mavlyutov R; Blanchette M; Cudré-Mauroux P; Waldispühl J
    Nucleic Acids Res; 2015 Sep; 43(16):e103. PubMed ID: 25990738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA 3D Structure Modeling by Combination of Template-Based Method ModeRNA, Template-Free Folding with SimRNA, and Refinement with QRNAS.
    Piatkowski P; Kasprzak JM; Kumar D; Magnus M; Chojnowski G; Bujnicki JM
    Methods Mol Biol; 2016; 1490():217-35. PubMed ID: 27665602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D genome structure modeling by Lorentzian objective function.
    Trieu T; Cheng J
    Nucleic Acids Res; 2017 Feb; 45(3):1049-1058. PubMed ID: 28180292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resolving complex structural genomic rearrangements using a randomized approach.
    Zhao X; Emery SB; Myers B; Kidd JM; Mills RE
    Genome Biol; 2016 Jun; 17(1):126. PubMed ID: 27287201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated RNA 3D Structure Prediction with RNAComposer.
    Biesiada M; Purzycka KJ; Szachniuk M; Blazewicz J; Adamiak RW
    Methods Mol Biol; 2016; 1490():199-215. PubMed ID: 27665601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ensembl Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomics Data.
    Bolser D; Staines DM; Pritchard E; Kersey P
    Methods Mol Biol; 2016; 1374():115-40. PubMed ID: 26519403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ensembl Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomic Data.
    Bolser DM; Staines DM; Perry E; Kersey PJ
    Methods Mol Biol; 2017; 1533():1-31. PubMed ID: 27987162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joint inference and alignment of genome structures enables characterization of compartment-independent reorganization across cell types.
    Rieber L; Mahony S
    Epigenetics Chromatin; 2019 Oct; 12(1):61. PubMed ID: 31594535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [GSDS: a gene structure display server].
    Guo AY; Zhu QH; Chen X; Luo JC
    Yi Chuan; 2007 Aug; 29(8):1023-6. PubMed ID: 17681935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TIP: A Web Server for Resolving Tumor Immunophenotype Profiling.
    Xu L; Deng C; Pang B; Zhang X; Liu W; Liao G; Yuan H; Cheng P; Li F; Long Z; Yan M; Zhao T; Xiao Y; Li X
    Cancer Res; 2018 Dec; 78(23):6575-6580. PubMed ID: 30154154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.