BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 27734923)

  • 1. Quadrupole lattice resonances in plasmonic crystal excited by cylindrical vector beams.
    Sakai K; Nomura K; Yamamoto T; Omura T; Sasaki K
    Sci Rep; 2016 Oct; 6():34967. PubMed ID: 27734923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Super- and Subradiant Lattice Resonances in Bipartite Nanoparticle Arrays.
    Cuartero-González A; Sanders S; Zundel L; Fernández-Domínguez AI; Manjavacas A
    ACS Nano; 2020 Sep; 14(9):11876-11887. PubMed ID: 32794729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lattice Resonances Excited by Finite-Width Light Beams.
    Zundel L; Deop-Ruano JR; Martinez-Herrero R; Manjavacas A
    ACS Omega; 2022 Sep; 7(35):31431-31441. PubMed ID: 36092601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dark modes and Fano resonances in plasmonic clusters excited by cylindrical vector beams.
    Sancho-Parramon J; Bosch S
    ACS Nano; 2012 Sep; 6(9):8415-23. PubMed ID: 22920735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications.
    Danilov A; Tselikov G; Wu F; Kravets VG; Ozerov I; Bedu F; Grigorenko AN; Kabashin AV
    Biosens Bioelectron; 2018 May; 104():102-112. PubMed ID: 29331424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybridization of Lattice Resonances.
    Baur S; Sanders S; Manjavacas A
    ACS Nano; 2018 Feb; 12(2):1618-1629. PubMed ID: 29301081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective Induction of Optical Magnetism.
    Manna U; Lee JH; Deng TS; Parker J; Shepherd N; Weizmann Y; Scherer NF
    Nano Lett; 2017 Dec; 17(12):7196-7206. PubMed ID: 29111760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-Plane Surface Lattice and Higher Order Resonances in Self-Assembled Plasmonic Monolayers: From Substrate-Supported to Free-Standing Thin Films.
    Volk K; Fitzgerald JPS; Karg M
    ACS Appl Mater Interfaces; 2019 May; 11(17):16096-16106. PubMed ID: 30945839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lasing in dark and bright modes of a finite-sized plasmonic lattice.
    Hakala TK; Rekola HT; Väkeväinen AI; Martikainen JP; Nečada M; Moilanen AJ; Törmä P
    Nat Commun; 2017 Jan; 8():13687. PubMed ID: 28045047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective excitation of plasmon resonances with single V-point cylindrical vector beams.
    Xu B; Heffernan BM; Bae K; Siemens ME; Gopinath JT; Park W
    Opt Express; 2021 Apr; 29(9):13071-13083. PubMed ID: 33985050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface Lattice Resonances in 3D Chiral Metacrystals for Plasmonic Sensing.
    Manoccio M; Tasco V; Todisco F; Passaseo A; Cuscuna M; Tarantini I; Gigli G; Esposito M
    Adv Sci (Weinh); 2023 Feb; 10(6):e2206930. PubMed ID: 36575146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-insulator-metal plasmonic absorbers: influence of lattice.
    Chen Y; Dai J; Yan M; Qiu M
    Opt Express; 2014 Dec; 22(25):30807-14. PubMed ID: 25607029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin-Dependent Emission from Arrays of Planar Chiral Nanoantennas Due to Lattice and Localized Plasmon Resonances.
    Cotrufo M; Osorio CI; Koenderink AF
    ACS Nano; 2016 Mar; 10(3):3389-97. PubMed ID: 26854880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid anisotropic plasmonic metasurfaces with multiple resonances of focused light beams.
    Liang Y; Lin H; Lin S; Wu J; Li W; Meng F; Yang Y; Huang X; Jia B; Kivshar Y
    Nano Lett; 2021 Oct; 21(20):8917-8923. PubMed ID: 34459611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface Lattice Resonances for Enhanced and Directional Electroluminescence at High Current Densities.
    Zakharko Y; Held M; Graf A; Rödlmeier T; Eckstein R; Hernandez-Sosa G; Hähnlein B; Pezoldt J; Zaumseil J
    ACS Photonics; 2016 Dec; 3(12):2225-2230. PubMed ID: 28042593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Nanolenses Produced by Cylindrical Vector Beam Printing for Sensing Applications.
    Syubaev SA; Zhizhchenko AY; Pavlov DV; Gurbatov SO; Pustovalov EV; Porfirev AP; Khonina SN; Kulinich SA; Rayappan JBB; Kudryashov SI; Kuchmizhak AA
    Sci Rep; 2019 Dec; 9(1):19750. PubMed ID: 31874984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Normal Incidence Excitation of Out-of-Plane Lattice Resonances in Bipartite Arrays of Metallic Nanostructures.
    Alvarez-Serrano JJ; Deop-Ruano JR; Aglieri V; Toma A; Manjavacas A
    ACS Photonics; 2024 Jan; 11(1):301-309. PubMed ID: 38344384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical Investigation of Multifunctional Plasmonic Micro-Fiber Based on Fano Resonances and LSPR Excited via Cylindrical Vector Beam.
    Liu M; Yu L; Lei Y; Fang X; Ma Y; Liu L; Zheng J; Lin K; Gao P
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.