These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 27734923)

  • 21. Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas.
    Vecchi G; Giannini V; Gómez Rivas J
    Phys Rev Lett; 2009 Apr; 102(14):146807. PubMed ID: 19392471
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient excitation of self-collimated beams and single Bloch modes in planar photonic crystals.
    Witzens J; Scherer A
    J Opt Soc Am A Opt Image Sci Vis; 2003 May; 20(5):935-40. PubMed ID: 12747440
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Significant Near-Field Enhancement over Large Volumes around Metal Nanorods via Strong Coupling of Surface Lattice Resonances and Fabry-Pérot Resonance.
    Shi Y; Dong Y; Sun D; Li G
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208063
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Applicability of multipole decomposition to plasmonic- and dielectric-lattice resonances.
    Han A; Moloney JV; Babicheva VE
    J Chem Phys; 2022 Mar; 156(11):114104. PubMed ID: 35317599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Double Fano resonances in plasmonic nanocross molecules and magnetic plasmon propagation.
    Li GZ; Li Q; Wu LJ
    Nanoscale; 2015 Dec; 7(47):19914-20. PubMed ID: 26580687
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Imaging of Antiferroelectric Dark Modes in an Inverted Plasmonic Lattice.
    Rodríguez-Álvarez J; Labarta A; Idrobo JC; Dell'Anna R; Cian A; Giubertoni D; Borrisé X; Guerrero A; Perez-Murano F; Fraile Rodríguez A; Batlle X
    ACS Nano; 2023 May; 17(9):8123-8132. PubMed ID: 37089111
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coexistence of surface lattice resonances and bound states in the continuum in a plasmonic lattice.
    Trinh QT; Nguyen SK; Nguyen DH; Tran GK; Le VH; Nguyen HS; Le-Van Q
    Opt Lett; 2022 Mar; 47(6):1510-1513. PubMed ID: 35290351
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface Lattice Resonances in Self-Assembled Gold Nanoparticle Arrays: Impact of Lattice Period, Structural Disorder, and Refractive Index on Resonance Quality.
    Ponomareva E; Volk K; Mulvaney P; Karg M
    Langmuir; 2020 Nov; 36(45):13601-13612. PubMed ID: 33147412
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mode-Specific Coupling of Nanoparticle-on-Mirror Cavities with Cylindrical Vector Beams.
    Vento V; Roelli P; Verlekar S; Galland C
    Nano Lett; 2023 Jun; 23(11):4885-4892. PubMed ID: 37205630
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas.
    Giannini V; Vecchi G; Rivas JG
    Phys Rev Lett; 2010 Dec; 105(26):266801. PubMed ID: 21231697
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chiral Surface Lattice Resonances.
    Goerlitzer ESA; Mohammadi R; Nechayev S; Volk K; Rey M; Banzer P; Karg M; Vogel N
    Adv Mater; 2020 Jun; 32(22):e2001330. PubMed ID: 32319171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cross-polarized surface lattice resonances in a rectangular lattice plasmonic metasurface.
    Saad Bin-Alam M; Reshef O; Naeem Ahmad R; Upham J; Huttunen MJ; Dolgaleva K; Boyd RW
    Opt Lett; 2022 Apr; 47(8):2105-2108. PubMed ID: 35427348
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Double Fano resonances in hybrid disk/rod artificial plasmonic molecules based on dipole-quadrupole coupling.
    Chen Z; Zhang S; Chen Y; Liu Y; Li P; Wang Z; Zhu X; Bi K; Duan H
    Nanoscale; 2020 May; 12(17):9776-9785. PubMed ID: 32324182
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dipole-lattice nanoparticle resonances in finite arrays.
    Karimi V; Babicheva VE
    Opt Express; 2023 May; 31(10):16857-16871. PubMed ID: 37157755
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Boundary effects in finite size plasmonic crystals: focusing and routing of plasmonic beams for optical communications.
    Benetou MI; Bouillard JS; Segovia P; Dickson W; Thomsen BC; Bayvel P; Zayats AV
    Nanotechnology; 2015 Nov; 26(44):444001. PubMed ID: 26469205
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lasing action in strongly coupled plasmonic nanocavity arrays.
    Zhou W; Dridi M; Suh JY; Kim CH; Co DT; Wasielewski MR; Schatz GC; Odom TW
    Nat Nanotechnol; 2013 Jul; 8(7):506-11. PubMed ID: 23770807
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of the Limits of the Near-Field Produced by Nanoparticle Arrays.
    Manjavacas A; Zundel L; Sanders S
    ACS Nano; 2019 Sep; 13(9):10682-10693. PubMed ID: 31487460
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chiral Lattice Resonances in 2.5-Dimensional Periodic Arrays with Achiral Unit Cells.
    Cerdán L; Zundel L; Manjavacas A
    ACS Photonics; 2023 Jun; 10(6):1925-1935. PubMed ID: 37363634
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strong Exciton-Plasmon Coupling in MoS2 Coupled with Plasmonic Lattice.
    Liu W; Lee B; Naylor CH; Ee HS; Park J; Johnson AT; Agarwal R
    Nano Lett; 2016 Feb; 16(2):1262-9. PubMed ID: 26784532
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plasmonic Surface Lattice Resonances: A Review of Properties and Applications.
    Kravets VG; Kabashin AV; Barnes WL; Grigorenko AN
    Chem Rev; 2018 Jun; 118(12):5912-5951. PubMed ID: 29863344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.