These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 27734923)

  • 41. Shaping plasmon beams via the controlled illumination of finite-size plasmonic crystals.
    Bouillard JS; Segovia P; Dickson W; Wurtz GA; Zayats AV
    Sci Rep; 2014 Nov; 4():7234. PubMed ID: 25429786
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hierarchical Hybridization in Plasmonic Honeycomb Lattices.
    Li R; Bourgeois MR; Cherqui C; Guan J; Wang D; Hu J; Schaller RD; Schatz GC; Odom TW
    Nano Lett; 2019 Sep; 19(9):6435-6441. PubMed ID: 31390214
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High Spectral Sensitivity of Strongly Coupled Hybrid Tamm-Plasmonic Resonances for Biosensing Application.
    Anulytė J; Bužavaitė-Vertelienė E; Stankevičius E; Vilkevičius K; Balevičius Z
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502156
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Study of high order plasmonic modes on ceramic nanodisks.
    Gosciniak J; Justice J; Khan U; Modreanu M; Corbett B
    Opt Express; 2017 Mar; 25(5):5244-5254. PubMed ID: 28380788
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Selective excitation of bright and dark plasmonic resonances of single gold nanorods.
    Demichel O; Petit M; Colas des Francs G; Bouhelier A; Hertz E; Billard F; de Fornel F; Cluzel B
    Opt Express; 2014 Jun; 22(12):15088-96. PubMed ID: 24977601
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Turning on plasmonic lattice modes in metallic nanoantenna arrays via silicon thin films.
    Sadeghi SM; Gutha RR; Wing WJ
    Opt Lett; 2016 Jul; 41(14):3367-70. PubMed ID: 27420537
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Energy Efficient Single Pulse Switching of [Co/Gd/Pt]
    Vergès M; Perumbilavil S; Hohlfeld J; Freire-Fernández F; Le Guen Y; Kuznetsov N; Montaigne F; Malinowski G; Lacour D; Hehn M; van Dijken S; Mangin S
    Adv Sci (Weinh); 2023 Feb; 10(4):e2204683. PubMed ID: 36507620
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Perfect absorption and phase singularities induced by surface lattice resonances for plasmonic nanoparticle array on a metallic film.
    Bai Y; Zheng H; Zhang Q; Yu Y; Liu SD
    Opt Express; 2022 Dec; 30(25):45400-45412. PubMed ID: 36522946
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Super-resolution Mapping of Enhanced Emission by Collective Plasmonic Resonances.
    Hamans RF; Parente M; Castellanos GW; Ramezani M; Gómez Rivas J; Baldi A
    ACS Nano; 2019 Apr; 13(4):4514-4521. PubMed ID: 30938979
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dark plasmonic mode based perfect absorption and refractive index sensing.
    Yang WH; Zhang C; Sun S; Jing J; Song Q; Xiao S
    Nanoscale; 2017 Jul; 9(26):8907-8912. PubMed ID: 28638910
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Subradiant Dipolar Interactions in Plasmonic Nanoring Resonator Array for Integrated Label-Free Biosensing.
    Liang Y; Zhang H; Zhu W; Agrawal A; Lezec H; Li L; Peng W; Zou Y; Lu Y; Xu T
    ACS Sens; 2017 Dec; 2(12):1796-1804. PubMed ID: 29139285
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces.
    Li Z; Butun S; Aydin K
    ACS Nano; 2014 Aug; 8(8):8242-8. PubMed ID: 25072803
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Surface lattice resonance in three-dimensional plasmonic arrays fabricated via self-assembly of silica-coated gold nanoparticles.
    Hasegawa M; Watanabe K; Namigata H; Welling TAJ; Suga K; Nagao D
    J Colloid Interface Sci; 2023 Mar; 633():226-232. PubMed ID: 36446215
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fourier-Engineered Plasmonic Lattice Resonances.
    Lim TL; Vaddi Y; Bin-Alam MS; Cheng L; Alaee R; Upham J; Huttunen MJ; Dolgaleva K; Reshef O; Boyd RW
    ACS Nano; 2022 Apr; 16(4):5696-5703. PubMed ID: 35357153
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Resonant harmonic generation in AlGaAs nanoantennas probed by cylindrical vector beams.
    Camacho-Morales R; Bautista G; Zang X; Xu L; Turquet L; Miroshnichenko A; Tan HH; Lamprianidis A; Rahmani M; Jagadish C; Neshev DN; Kauranen M
    Nanoscale; 2019 Jan; 11(4):1745-1753. PubMed ID: 30623948
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals.
    Zakharko Y; Graf A; Schießl SP; Hähnlein B; Pezoldt J; Gather MC; Zaumseil J
    Nano Lett; 2016 May; 16(5):3278-84. PubMed ID: 27105249
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Excitation of multipole plasmons by optical vortex beams.
    Sakai K; Nomura K; Yamamoto T; Sasaki K
    Sci Rep; 2015 Feb; 5():8431. PubMed ID: 25672226
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lasing in Ni Nanodisk Arrays.
    Pourjamal S; Hakala TK; Nečada M; Freire-Fernández F; Kataja M; Rekola H; Martikainen JP; Törmä P; van Dijken S
    ACS Nano; 2019 May; 13(5):5686-5692. PubMed ID: 30973219
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multiple surface lattice resonances of overlapping nanoparticle arrays with different lattice spacing.
    Zheng H; Bai Y; Zhang Q; Yu Y; Liu S
    Opt Express; 2023 Oct; 31(22):35937-35947. PubMed ID: 38017754
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spin-orbit interactions in plasmonic crystals probed by site-selective cathodoluminescence spectroscopy.
    Taleb M; Samadi M; Davoodi F; Black M; Buhl J; Lüder H; Gerken M; Talebi N
    Nanophotonics; 2023 May; 12(10):1877-1889. PubMed ID: 37159805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.