These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 27735018)

  • 1. Enhancing image quality in cleared tissue with adaptive optics.
    Reinig MR; Novak SW; Tao X; Bentolila LA; Roberts DG; MacKenzie-Graham A; Godshalk SE; Raven MA; Knowles DW; Kubby J
    J Biomed Opt; 2016 Dec; 21(12):121508. PubMed ID: 27735018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive optics via pupil ring segmentation improves spherical aberration correction for two-photon imaging of optically cleared tissues.
    Gao Y; Liu L; Yin Y; Liao J; Yu J; Wu T; Ye S; Li H; Zheng W
    Opt Express; 2020 Nov; 28(23):34935-34947. PubMed ID: 33182951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance evaluation of a sensorless adaptive optics multiphoton microscope.
    Skorsetz M; Artal P; Bueno JM
    J Microsc; 2016 Mar; 261(3):249-58. PubMed ID: 26469361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling the effects of secondary spherical aberration on refractive error, image quality and depth of focus.
    Xu R; Bradley A; López Gil N; Thibos LN
    Ophthalmic Physiol Opt; 2015 Jan; 35(1):28-38. PubMed ID: 25532544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic aberration correction for multiharmonic microscopy.
    Olivier N; Débarre D; Beaurepaire E
    Opt Lett; 2009 Oct; 34(20):3145-7. PubMed ID: 19838254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiphoton imaging microscopy at deeper layers with adaptive optics control of spherical aberration.
    Bueno JM; Skorsetz M; Palacios R; Gualda EJ; Artal P
    J Biomed Opt; 2014 Jan; 19(1):011007. PubMed ID: 23864036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spherical aberration correction in multiphoton fluorescence imaging using objective correction collar.
    Lo W; Sun Y; Lin SJ; Jee SH; Dong CY
    J Biomed Opt; 2005; 10(3):034006. PubMed ID: 16229650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.
    Cua M; Wahl DJ; Zhao Y; Lee S; Bonora S; Zawadzki RJ; Jian Y; Sarunic MV
    Sci Rep; 2016 Sep; 6():32223. PubMed ID: 27599635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive optics in microscopy.
    Booth MJ
    Philos Trans A Math Phys Eng Sci; 2007 Dec; 365(1861):2829-43. PubMed ID: 17855218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of spherical aberration on visual acuity at different contrasts.
    Li J; Xiong Y; Wang N; Li S; Dai Y; Xue L; Zhao H; Jiang W; Zhang Y
    J Cataract Refract Surg; 2009 Aug; 35(8):1389-95. PubMed ID: 19631126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correcting spherical aberrations in confocal light sheet microscopy: a theoretical study.
    Silvestri L; Sacconi L; Pavone FS
    Microsc Res Tech; 2014 Jul; 77(7):483-91. PubMed ID: 24395714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correcting spherical aberrations in a biospecimen using a transmissive liquid crystal device in two-photon excitation laser scanning microscopy.
    Tanabe A; Hibi T; Ipponjima S; Matsumoto K; Yokoyama M; Kurihara M; Hashimoto N; Nemoto T
    J Biomed Opt; 2015 Oct; 20(10):101204. PubMed ID: 26244766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correction of spherical aberration in multi-focal multiphoton microscopy with spatial light modulator.
    Matsumoto N; Konno A; Ohbayashi Y; Inoue T; Matsumoto A; Uchimura K; Kadomatsu K; Okazaki S
    Opt Express; 2017 Mar; 25(6):7055-7068. PubMed ID: 28381046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive optics for enhanced signal in CARS microscopy.
    Wright AJ; Poland SP; Girkin JM; Freudiger CW; Evans CL; Xie XS
    Opt Express; 2007 Dec; 15(26):18209-19. PubMed ID: 19551119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aberration correction during real time in vivo imaging of bone marrow with sensorless adaptive optics confocal microscope.
    Wang Z; Wei D; Wei L; He Y; Shi G; Wei X; Zhang Y
    J Biomed Opt; 2014 Aug; 19(8):086009. PubMed ID: 25117079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image heterogeneity correction in large-area, three-dimensional multiphoton microscopy.
    Hovhannisyan VA; Su PJ; Chen YF; Dong CY
    Opt Express; 2008 Mar; 16(7):5107-17. PubMed ID: 18542610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced visual acuity and image perception following correction of highly aberrated eyes using an adaptive optics visual simulator.
    Rocha KM; Vabre L; Chateau N; Krueger RR
    J Refract Surg; 2010 Jan; 26(1):52-6. PubMed ID: 20199013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of specimen-induced aberrations for objects with spherical and cylindrical symmetry.
    Schwertner M; Booth MJ; Wilson T
    J Microsc; 2004 Sep; 215(Pt 3):271-80. PubMed ID: 15312192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization-based wavefront sensorless adaptive optics for multiphoton microscopy.
    Antonello J; van Werkhoven T; Verhaegen M; Truong HH; Keller CU; Gerritsen HC
    J Opt Soc Am A Opt Image Sci Vis; 2014 Jun; 31(6):1337-47. PubMed ID: 24977374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of monochromatic aberration on visual acuity using adaptive optics.
    Li S; Xiong Y; Li J; Wang N; Dai Y; Xue L; Zhao H; Jiang W; Zhang Y; He JC
    Optom Vis Sci; 2009 Jul; 86(7):868-74. PubMed ID: 19521271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.