These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 27735849)
1. Construction of Metabolism Prediction Models for CYP450 3A4, 2D6, and 2C9 Based on Microsomal Metabolic Reaction System. He SB; Li MM; Zhang BX; Ye XT; Du RF; Wang Y; Qiao YJ Int J Mol Sci; 2016 Oct; 17(10):. PubMed ID: 27735849 [TBL] [Abstract][Full Text] [Related]
2. Using chemical bond-based method to predict site of metabolism for five biotransformations mediated by CYP 3A4, 2D6, and 2C9. Fu X; He S; Du L; Lv Z; Zhang Y; Zhang Q; Wang Y Biochem Pharmacol; 2018 Jun; 152():302-314. PubMed ID: 29588194 [TBL] [Abstract][Full Text] [Related]
3. Predicting drug metabolism by cytochrome P450 2C9: comparison with the 2D6 and 3A4 isoforms. Rydberg P; Olsen L ChemMedChem; 2012 Jul; 7(7):1202-9. PubMed ID: 22593031 [TBL] [Abstract][Full Text] [Related]
4. Site of metabolism prediction for oxidation reactions mediated by oxidoreductases based on chemical bond. He S; Li M; Ye X; Wang H; Yu W; He W; Wang Y; Qiao Y Bioinformatics; 2017 Feb; 33(3):363-372. PubMed ID: 27667794 [TBL] [Abstract][Full Text] [Related]
5. Rehmannioside A inhibits the activity of CYP3A4, 2C9 and 2D6 in vitro. Wang C; Zhou N; Li M; Chen H Xenobiotica; 2024 Apr; 54(4):195-200. PubMed ID: 38385556 [TBL] [Abstract][Full Text] [Related]
6. CYP2C9, a Metabolic CYP450s Enzyme, Plays Critical Roles in Activating Ellagic Acid in Human Intestinal Epithelial Cells. Gu Y; Hou W; Shen XY; Zhuo SX; Zhang HR; Ji MH; Chen MJ; Guo YY Med Sci Monit; 2020 May; 26():e923104. PubMed ID: 32453717 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of machine learning models for cytochrome P450 3A4, 2D6, and 2C9 inhibition. Gong C; Feng Y; Zhu J; Liu G; Tang Y; Li W J Appl Toxicol; 2024 Jul; 44(7):1050-1066. PubMed ID: 38544296 [TBL] [Abstract][Full Text] [Related]
8. Comprehensive kinetic and modeling analyses revealed CYP2C9 and 3A4 determine terbinafine metabolic clearance and bioactivation. Barnette DA; Davis MA; Flynn N; Pidugu AS; Swamidass SJ; Miller GP Biochem Pharmacol; 2019 Dec; 170():113661. PubMed ID: 31605674 [TBL] [Abstract][Full Text] [Related]
9. Novel application of 2D and 3D-similarity searches to identify substrates among cytochrome P450 2C9, 2D6, and 3A4. Freitas RF; Bauab RL; Montanari CA J Chem Inf Model; 2010 Jan; 50(1):97-109. PubMed ID: 20055489 [TBL] [Abstract][Full Text] [Related]
10. Impact of Probe Substrate Selection on Cytochrome P450 Reaction Phenotyping Using the Relative Activity Factor. Siu YA; Lai WG Drug Metab Dispos; 2017 Feb; 45(2):183-189. PubMed ID: 27934636 [TBL] [Abstract][Full Text] [Related]
11. Probabilistic prediction of the human CYP3A4 and CYP2D6 metabolism sites. Dapkunas J; Sazonovas A; Japertas P Chem Biodivers; 2009 Nov; 6(11):2101-6. PubMed ID: 19937844 [TBL] [Abstract][Full Text] [Related]
12. Structure-based methods for the prediction of the dominant P450 enzyme in human drug biotransformation: consideration of CYP3A4, CYP2C9, CYP2D6. Manga N; Duffy JC; Rowe PH; Cronin MT SAR QSAR Environ Res; 2005; 16(1-2):43-61. PubMed ID: 15844442 [TBL] [Abstract][Full Text] [Related]
13. Prediction of cytochrome P450 3A4, 2D6, and 2C9 inhibitors and substrates by using support vector machines. Yap CW; Chen YZ J Chem Inf Model; 2005; 45(4):982-92. PubMed ID: 16045292 [TBL] [Abstract][Full Text] [Related]
14. Kinetic analysis of the activation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone by heterologously expressed human P450 enzymes and the effect of P450-specific chemical inhibitors on this activation in human liver microsomes. Patten CJ; Smith TJ; Murphy SE; Wang MH; Lee J; Tynes RE; Koch P; Yang CS Arch Biochem Biophys; 1996 Sep; 333(1):127-38. PubMed ID: 8806763 [TBL] [Abstract][Full Text] [Related]
15. CYP2D6 catalyzes tamoxifen 4-hydroxylation in human liver. Dehal SS; Kupfer D Cancer Res; 1997 Aug; 57(16):3402-6. PubMed ID: 9270005 [TBL] [Abstract][Full Text] [Related]
16. A new standardized electrochemical array for drug metabolic profiling with human cytochromes P450. Fantuzzi A; Mak LH; Capria E; Dodhia V; Panicco P; Collins S; Gilardi G Anal Chem; 2011 May; 83(10):3831-9. PubMed ID: 21469680 [TBL] [Abstract][Full Text] [Related]
17. Site of metabolism prediction for six biotransformations mediated by cytochromes P450. Zheng M; Luo X; Shen Q; Wang Y; Du Y; Zhu W; Jiang H Bioinformatics; 2009 May; 25(10):1251-8. PubMed ID: 19286831 [TBL] [Abstract][Full Text] [Related]
18. Inhibitory effects of calf thymus DNA on metabolism activity of CYP450 enzyme in human liver microsomes. Yang S; Qiu Z; Zhang Q; Chen J; Chen X Drug Metab Pharmacokinet; 2014; 29(6):475-81. PubMed ID: 25030415 [TBL] [Abstract][Full Text] [Related]
19. Role of human hepatic cytochrome P-450s in territrem A metabolism. Peng FC; Tseng HY; Tsai JC; Lin C; Doehmer J J Toxicol Environ Health A; 2003 Jul; 66(13):1237-48. PubMed ID: 12851121 [TBL] [Abstract][Full Text] [Related]
20. Biotransformation of 6-methoxy-3-(3',4',5'-trimethoxy-benzoyl)-1H-indole (BPR0L075), a novel antimicrotubule agent, by mouse, rat, dog, and human liver microsomes. Yao HT; Wu YS; Chang YW; Hsieh HP; Chen WC; Lan SJ; Chen CT; Chao YS; Chang L; Sun HY; Yeh TK Drug Metab Dispos; 2007 Jul; 35(7):1042-9. PubMed ID: 17403915 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]