These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. A computational approach predicting CYP450 metabolism and estrogenic activity of an endocrine disrupting compound (PCB-30). Harris JB; Eldridge ML; Sayler G; Menn FM; Layton AC; Baudry J Environ Toxicol Chem; 2014 Jul; 33(7):1615-23. PubMed ID: 24687371 [TBL] [Abstract][Full Text] [Related]
43. SOMP: web server for in silico prediction of sites of metabolism for drug-like compounds. Rudik A; Dmitriev A; Lagunin A; Filimonov D; Poroikov V Bioinformatics; 2015 Jun; 31(12):2046-8. PubMed ID: 25777527 [TBL] [Abstract][Full Text] [Related]
44. Peptide-based in vitro assay for the detection of reactive metabolites. Mitchell MD; Elrick MM; Walgren JL; Mueller RA; Morris DL; Thompson DC Chem Res Toxicol; 2008 Apr; 21(4):859-68. PubMed ID: 18370411 [TBL] [Abstract][Full Text] [Related]
45. Quantitative prediction of cytochrome P450 (CYP) 2D6-mediated drug interactions. Tod M; Goutelle S; Clavel-Grabit F; Nicolas G; Charpiat B Clin Pharmacokinet; 2011 Aug; 50(8):519-30. PubMed ID: 21740075 [TBL] [Abstract][Full Text] [Related]
46. Predictive models for cytochrome p450 isozymes based on quantitative high throughput screening data. Sun H; Veith H; Xia M; Austin CP; Huang R J Chem Inf Model; 2011 Oct; 51(10):2474-81. PubMed ID: 21905670 [TBL] [Abstract][Full Text] [Related]
47. A novel approach to predicting P450 mediated drug metabolism. CYP2D6 catalyzed N-dealkylation reactions and qualitative metabolite predictions using a combined protein and pharmacophore model for CYP2D6. de Groot MJ; Ackland MJ; Horne VA; Alex AA; Jones BC J Med Chem; 1999 Oct; 42(20):4062-70. PubMed ID: 10514276 [TBL] [Abstract][Full Text] [Related]
48. Transient Expression of Human Cytochrome P450s 2D6 and 3A4 in Nicotiana benthamiana Provides a Possibility for Rapid Substrate Testing and Production of Novel Compounds. Sheludko YV; Gerasymenko IM; Warzecha H Biotechnol J; 2018 Nov; 13(11):e1700696. PubMed ID: 29637719 [TBL] [Abstract][Full Text] [Related]
49. In Silico Prediction of Major Clearance Pathways of Drugs among 9 Routes with Two-Step Support Vector Machines. Wakayama N; Toshimoto K; Maeda K; Hotta S; Ishida T; Akiyama Y; Sugiyama Y Pharm Res; 2018 Aug; 35(10):197. PubMed ID: 30143865 [TBL] [Abstract][Full Text] [Related]
50. Prediction of reacting atoms for the major biotransformation reactions of organic xenobiotics. Rudik AV; Dmitriev AV; Lagunin AA; Filimonov DA; Poroikov VV J Cheminform; 2016; 8():68. PubMed ID: 27994650 [TBL] [Abstract][Full Text] [Related]
51. FAME 2: Simple and Effective Machine Learning Model of Cytochrome P450 Regioselectivity. Šícho M; de Bruyn Kops C; Stork C; Svozil D; Kirchmair J J Chem Inf Model; 2017 Aug; 57(8):1832-1846. PubMed ID: 28782945 [TBL] [Abstract][Full Text] [Related]
52. Prediction of CYP450 Enzyme-Substrate Selectivity Based on the Network-Based Label Space Division Method. Shan X; Wang X; Li CD; Chu Y; Zhang Y; Xiong Y; Wei DQ J Chem Inf Model; 2019 Nov; 59(11):4577-4586. PubMed ID: 31603319 [TBL] [Abstract][Full Text] [Related]
53. Predicting the Metabolic Sites by Flavin-Containing Monooxygenase on Drug Molecules Using SVM Classification on Computed Quantum Mechanics and Circular Fingerprints Molecular Descriptors. Fu CW; Lin TH PLoS One; 2017; 12(1):e0169910. PubMed ID: 28072829 [TBL] [Abstract][Full Text] [Related]
54. Prediction of Sites of Metabolism of CYP3A4 Substrates Utilizing Docking-Derived Geometric Features. Feng Y; Gong C; Zhu J; Liu G; Tang Y; Li W J Chem Inf Model; 2023 Jul; 63(13):4158-4169. PubMed ID: 37336765 [TBL] [Abstract][Full Text] [Related]
55. SOMEViz: a web service for site of metabolism estimating and visualizing. Shen Q; Zheng M; Lu J; Luo C; Zhu W; Chen K; Luo X; Jiang H Protein Pept Lett; 2012 Sep; 19(9):905-9. PubMed ID: 22894162 [TBL] [Abstract][Full Text] [Related]
56. PreMetabo: An in silico phase I and II drug metabolism prediction platform. Hwang S; Shin HK; Shin SE; Seo M; Jeon HN; Yim DE; Kim DH; No KT Drug Metab Pharmacokinet; 2020 Aug; 35(4):361-367. PubMed ID: 32616370 [TBL] [Abstract][Full Text] [Related]
57. Significance of Data Selection in Deep Learning for Reliable Binding Mode Prediction of Ligands in the Active Site of CYP3A4. Sato A; Tanimura N; Honma T; Konagaya A Chem Pharm Bull (Tokyo); 2019 Nov; 67(11):1183-1190. PubMed ID: 31423003 [TBL] [Abstract][Full Text] [Related]
58. The challenges of in silico contributions to drug metabolism in lead optimization. Vaz RJ; Zamora I; Li Y; Reiling S; Shen J; Cruciani G Expert Opin Drug Metab Toxicol; 2010 Jul; 6(7):851-61. PubMed ID: 20565339 [TBL] [Abstract][Full Text] [Related]
59. GLORYx: Prediction of the Metabolites Resulting from Phase 1 and Phase 2 Biotransformations of Xenobiotics. de Bruyn Kops C; Šícho M; Mazzolari A; Kirchmair J Chem Res Toxicol; 2021 Feb; 34(2):286-299. PubMed ID: 32786543 [TBL] [Abstract][Full Text] [Related]
60. RS-predictor: a new tool for predicting sites of cytochrome P450-mediated metabolism applied to CYP 3A4. Zaretzki J; Bergeron C; Rydberg P; Huang TW; Bennett KP; Breneman CM J Chem Inf Model; 2011 Jul; 51(7):1667-89. PubMed ID: 21528931 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]