These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 2773664)
1. Much larger transcapillary hydrodynamic conductivity in skeletal muscle and skin of man than previously believed. Lundvall J; Länne T Acta Physiol Scand; 1989 May; 136(1):7-16. PubMed ID: 2773664 [TBL] [Abstract][Full Text] [Related]
2. Large capillary fluid permeability in skeletal muscle and skin of man as a basis for rapid beneficial fluid transfer between tissue and blood. Länne T; Edfeldt H; Quittenbaum S; Lundvall J Acta Physiol Scand; 1992 Nov; 146(3):313-9. PubMed ID: 1481688 [TBL] [Abstract][Full Text] [Related]
3. The capillary filtration coefficient for evaluation of capillary fluid permeability in cat calf muscles. Kongstad L; Grände PO Acta Physiol Scand; 1998 Oct; 164(2):201-11. PubMed ID: 9805107 [TBL] [Abstract][Full Text] [Related]
4. Autoregulation of capillary pressure and filtration in cat skeletal muscle in states of normal and reduced vascular tone. Mellander S; Maspers M; Björnberg J; Andersson LO Acta Physiol Scand; 1987 Mar; 129(3):337-51. PubMed ID: 2883809 [TBL] [Abstract][Full Text] [Related]
5. Evidence for a much higher transcapillary hydrodynamic conductivity in the human forearm and lower leg than previously believed. Lundvall J; Länne T Acta Physiol Scand; 1988 Nov; 134(3):453-4. PubMed ID: 3227959 [No Abstract] [Full Text] [Related]
6. Very rapid net transcapillary fluid absorption from skeletal muscle and skin in man during pronounced hypovolaemic circulatory stress. Länne T; Lundvall J Acta Physiol Scand; 1989 May; 136(1):1-6. PubMed ID: 2773653 [TBL] [Abstract][Full Text] [Related]
7. A note on the errors of using venous congestion in intact rats for determinations of microvascular permeability. Haraldsson B; Johnsson E; Rippe B Acta Physiol Scand; 1991 Nov; 143(3):233-8. PubMed ID: 1772030 [TBL] [Abstract][Full Text] [Related]
8. Sympathetic baroreflex control of vascular resistance in comfortably warm man. Analyses of neurogenic constrictor responses in the resting forearm and in its separate skeletal muscle and skin tissue compartments. Edfeldt H; Lundvall J Acta Physiol Scand; 1993 Apr; 147(4):437-47. PubMed ID: 8493877 [TBL] [Abstract][Full Text] [Related]
9. Sympathetic alpha-adrenergic control of large-bore arterial vessels, arterioles and veins, and of capillary pressure and fluid exchange in whole-organ cat skeletal muscle. Maspers M; Björnberg J; Grände PO; Mellander S Acta Physiol Scand; 1990 Apr; 138(4):509-21. PubMed ID: 2353580 [TBL] [Abstract][Full Text] [Related]
10. Forces involved in transcapillary fluid movement in exercising cat skeletal muscle. Björnberg J Acta Physiol Scand; 1990 Oct; 140(2):221-36. PubMed ID: 2267951 [TBL] [Abstract][Full Text] [Related]
11. Transcapillary albumin extravasation in rat skin and skeletal muscle: effect of increased venous pressure. Reed RK Acta Physiol Scand; 1988 Nov; 134(3):375-82. PubMed ID: 3227955 [TBL] [Abstract][Full Text] [Related]
12. Microvascular filtration is increased in the forearms of patients with breast cancer-related lymphedema. Jensen MR; Simonsen L; Karlsmark T; Bülow J J Appl Physiol (1985); 2013 Jan; 114(1):19-27. PubMed ID: 23123353 [TBL] [Abstract][Full Text] [Related]
13. Myogenic mechanisms in the control of systemic resistance and transcapillary fluid exchange in man. Lundvall J J Hypertens Suppl; 1989 Sep; 7(4):S85-91. PubMed ID: 2809809 [TBL] [Abstract][Full Text] [Related]
14. [A new method for determining capillary filtration coefficients in tissues. 2. Animal experiment studies]. Petrow JM Z Gesamte Inn Med; 1990 Mar; 45(5):141-4. PubMed ID: 2356629 [TBL] [Abstract][Full Text] [Related]
15. Endothelin-1 reduces microvascular fluid permeability through secondary release of prostacyclin in cat Skeletal muscle. Bentzer P; Holbeck S; Grände PO Microvasc Res; 2002 Jan; 63(1):50-60. PubMed ID: 11749072 [TBL] [Abstract][Full Text] [Related]
16. A combined method for measuring transcapillary fluid exchange and regional hemodynamic parameters during constant pressure-flow conditions. Dvoretsky DP Acta Physiol Hung; 1984; 63(1):29-33. PubMed ID: 6741555 [TBL] [Abstract][Full Text] [Related]
17. Disturbance of peripheral microvascular function in congestive heart failure secondary to idiopathic dilated cardiomyopathy. Mahy IR; Shore AC; Smith LD; Tooke JE Cardiovasc Res; 1995 Dec; 30(6):939-44. PubMed ID: 8746209 [TBL] [Abstract][Full Text] [Related]
18. [Coefficient of capillary filtration in the skeletal muscles during changes of their hemodynamics]. Tkachenko BI; Dvoretskiĭ DP; Kudriashov IuA; Savel'ev AK; Demidov VA Fiziol Zh SSSR Im I M Sechenova; 1982 Dec; 68(12):1666-72. PubMed ID: 7166189 [TBL] [Abstract][Full Text] [Related]
19. Beta 2-adrenergic attenuation of capillary pressure autoregulation during haemorrhagic hypotension, a mechanism promoting transcapillary fluid absorption in skeletal muscle. Maspers M; Björnberg J Acta Physiol Scand; 1991 May; 142(1):11-20. PubMed ID: 1678909 [TBL] [Abstract][Full Text] [Related]