These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 27736696)

  • 1. Suitability estimation for urban development using multi-hazard assessment map.
    Bathrellos GD; Skilodimou HD; Chousianitis K; Youssef AM; Pradhan B
    Sci Total Environ; 2017 Jan; 575():119-134. PubMed ID: 27736696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GIS-based multicriteria decision analysis for settlement areas: a case study in Canik.
    Kilicoglu C
    Environ Sci Pollut Res Int; 2022 May; 29(24):35746-35759. PubMed ID: 35060034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-hazard probability assessment and mapping in Iran.
    Pourghasemi HR; Gayen A; Panahi M; Rezaie F; Blaschke T
    Sci Total Environ; 2019 Nov; 692():556-571. PubMed ID: 31351297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determining the effect of urbanization on flood hazard zones in Kahramanmaras, Turkey, using flood hazard index and multi-criteria decision analysis.
    Dutal H
    Environ Monit Assess; 2022 Nov; 195(1):92. PubMed ID: 36352156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geo-hazards assessment and land suitability estimation for spatial planning using multi-criteria analysis.
    Chelariu OE; Minea I; Iațu C
    Heliyon; 2023 Jul; 9(7):e18159. PubMed ID: 37519761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping.
    Feizizadeh B; Shadman Roodposhti M; Jankowski P; Blaschke T
    Comput Geosci; 2014 Dec; 73():208-221. PubMed ID: 26089577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of geographical information system-based analytical hierarchy process modeling for flood susceptibility mapping of Krishna District in Andhra Pradesh.
    Penki R; Basina SS; Tanniru SR
    Environ Sci Pollut Res Int; 2023 Sep; 30(44):99062-99075. PubMed ID: 36087179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flood vulnerability mapping and urban sprawl suitability using FR, LR, and SVM models.
    Youssef AM; Pourghasemi HR; Mahdi AM; Matar SS
    Environ Sci Pollut Res Int; 2023 Feb; 30(6):16081-16105. PubMed ID: 36178648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A GIS based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis.
    Feizizadeh B; Jankowski P; Blaschke T
    Comput Geosci; 2014 Mar; 64():81-95. PubMed ID: 25843987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flood hazard assessment in large plain basins with a scarce slope in the Pampean Plain, Argentina.
    Borzi G; Roig A; Tanjal C; Santucci L; Tejada Tejada M; Carol E
    Environ Monit Assess; 2021 Mar; 193(4):177. PubMed ID: 33751244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated flood hazard assessment based on spatial ordered weighted averaging method considering spatial heterogeneity of risk preference.
    Xiao Y; Yi S; Tang Z
    Sci Total Environ; 2017 Dec; 599-600():1034-1046. PubMed ID: 28511348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A national scale flood hazard mapping methodology: The case of Greece - Protection and adaptation policy approaches.
    Kourgialas NN; Karatzas GP
    Sci Total Environ; 2017 Dec; 601-602():441-452. PubMed ID: 28575822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-hazard spatial modeling via ensembles of machine learning and meta-heuristic techniques.
    Bordbar M; Aghamohammadi H; Pourghasemi HR; Azizi Z
    Sci Rep; 2022 Jan; 12(1):1451. PubMed ID: 35087111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A geospatial analysis of flood risk zones in Cyprus: insights from statistical and multi-criteria decision analysis methods.
    Ghanem MAAN; Zaifoglu H
    Environ Sci Pollut Res Int; 2024 May; 31(22):32875-32900. PubMed ID: 38671266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AHP and TOPSIS based flood risk assessment- a case study of the Navsari City, Gujarat, India.
    Pathan AI; Girish Agnihotri P; Said S; Patel D
    Environ Monit Assess; 2022 Jun; 194(7):509. PubMed ID: 35713716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping flood susceptibility with PROMETHEE multi-criteria analysis method.
    Plataridis K; Mallios Z
    Environ Sci Pollut Res Int; 2024 Jun; 31(28):41267-41289. PubMed ID: 38847951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of flood hazard areas at a regional scale using an index-based approach and Analytical Hierarchy Process: Application in Rhodope-Evros region, Greece.
    Kazakis N; Kougias I; Patsialis T
    Sci Total Environ; 2015 Dec; 538():555-63. PubMed ID: 26318691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Landslide susceptibility zonation using the analytical hierarchy process (AHP) in the Great Xi'an Region, China.
    Liu X; Shao S; Shao S
    Sci Rep; 2024 Feb; 14(1):2941. PubMed ID: 38316944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determining the most suitable areas for artificial groundwater recharge via an integrated PROMETHEE II-AHP method in GIS environment (case study: Garabaygan Basin, Iran).
    Nasiri H; Boloorani AD; Sabokbar HA; Jafari HR; Hamzeh M; Rafii Y
    Environ Monit Assess; 2013 Jan; 185(1):707-18. PubMed ID: 22402992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GIS-based landslide susceptibility mapping using heuristic and bivariate statistical methods for Iva Valley and environs Southeast Nigeria.
    Ozioko OH; Igwe O
    Environ Monit Assess; 2020 Jan; 192(2):119. PubMed ID: 31950278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.