These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 27736808)

  • 1. Stretch-and-release fabrication, testing and optimization of a flexible ceramic armor inspired from fish scales.
    Martini R; Barthelat F
    Bioinspir Biomim; 2016 Oct; 11(6):066001. PubMed ID: 27736808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication, testing and modeling of a new flexible armor inspired from natural fish scales and osteoderms.
    Chintapalli RK; Mirkhalaf M; Dastjerdi AK; Barthelat F
    Bioinspir Biomim; 2014 Sep; 9(3):036005. PubMed ID: 24613857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of bio-inspired protective scales using 3D printing and mechanical testing.
    Martini R; Balit Y; Barthelat F
    Acta Biomater; 2017 Jun; 55():360-372. PubMed ID: 28323175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-printing and mechanics of bio-inspired articulated and multi-material structures.
    Porter MM; Ravikumar N; Barthelat F; Martini R
    J Mech Behav Biomed Mater; 2017 Sep; 73():114-126. PubMed ID: 28131676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanics of composite elasmoid fish scale assemblies and their bioinspired analogues.
    Browning A; Ortiz C; Boyce MC
    J Mech Behav Biomed Mater; 2013 Mar; 19():75-86. PubMed ID: 23517749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and mechanical properties of fish scales for the bio-inspired design of flexible body armors: A review.
    Rawat P; Zhu D; Rahman MZ; Barthelat F
    Acta Biomater; 2021 Feb; 121():41-67. PubMed ID: 33285327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Puncture resistance of the scaled skin from striped bass: collective mechanisms and inspiration for new flexible armor designs.
    Zhu D; Szewciw L; Vernerey F; Barthelat F
    J Mech Behav Biomed Mater; 2013 Aug; 24():30-40. PubMed ID: 23683758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new design and performance optimization of bio-inspired flexible protective equipment.
    Zhang C; Rawat P; Liu P; Zhu D
    Bioinspir Biomim; 2020 Sep; 15(6):. PubMed ID: 32640437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinspired fabrication and characterization of a synthetic fish skin for the protection of soft materials.
    Funk N; Vera M; Szewciw LJ; Barthelat F; Stoykovich MP; Vernerey FJ
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5972-83. PubMed ID: 25723101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The limiting layer of fish scales: Structure and properties.
    Arola D; Murcia S; Stossel M; Pahuja R; Linley T; Devaraj A; Ramulu M; Ossa EA; Wang J
    Acta Biomater; 2018 Feb; 67():319-330. PubMed ID: 29248639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designed for resistance to puncture: The dynamic response of fish scales.
    Ghods S; Murcia S; Ossa EA; Arola D
    J Mech Behav Biomed Mater; 2019 Feb; 90():451-459. PubMed ID: 30448559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexibility and protection by design: imbricated hybrid microstructures of bio-inspired armor.
    Rudykh S; Ortiz C; Boyce MC
    Soft Matter; 2015 Apr; 11(13):2547-54. PubMed ID: 25715866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions of intermolecular bonding and lubrication to the mechanical behavior of a natural armor.
    Jiang H; Ghods S; Weller E; Waddell S; Ossa EA; Yang F; Arola D
    Acta Biomater; 2020 Apr; 106():242-255. PubMed ID: 32084601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The nonlinear flexural response of a whole teleost fish: Contribution of scales and skin.
    Szewciw L; Zhu D; Barthelat F
    J Mech Behav Biomed Mater; 2017 Dec; 76():97-103. PubMed ID: 28645510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired design of flexible armor based on chiton scales.
    Connors M; Yang T; Hosny A; Deng Z; Yazdandoost F; Massaadi H; Eernisse D; Mirzaeifar R; Dean MN; Weaver JC; Ortiz C; Li L
    Nat Commun; 2019 Dec; 10(1):5413. PubMed ID: 31822663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Length-scale dependency of biomimetic hard-soft composites.
    Mirzaali MJ; Edens ME; de la Nava AH; Janbaz S; Vena P; Doubrovski EL; Zadpoor AA
    Sci Rep; 2018 Aug; 8(1):12052. PubMed ID: 30104571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lamellae spatial distribution modulates fracture behavior and toughness of african pangolin scales.
    Chon MJ; Daly M; Wang B; Xiao X; Zaheri A; Meyers MA; Espinosa HD
    J Mech Behav Biomed Mater; 2017 Dec; 76():30-37. PubMed ID: 28645511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The natural armors of fish: A comparison of the lamination pattern and structure of scales.
    Murcia S; Lavoie E; Linley T; Devaraj A; Ossa EA; Arola D
    J Mech Behav Biomed Mater; 2017 Sep; 73():17-27. PubMed ID: 27745845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties and structure of the biological multilayered material system, Atractosteus spatula scales.
    Allison PG; Chandler MQ; Rodriguez RI; Williams BA; Moser RD; Weiss CA; Poda AR; Lafferty BJ; Kennedy AJ; Seiter JM; Hodo WD; Cook RF
    Acta Biomater; 2013 Feb; 9(2):5289-96. PubMed ID: 23149253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition delay using biomimetic fish scale arrays.
    Muthuramalingam M; Puckert DK; Rist U; Bruecker C
    Sci Rep; 2020 Sep; 10(1):14534. PubMed ID: 32884032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.