These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 27736890)
1. Biomechanical Constraints Underlying Motor Primitives Derived from the Musculoskeletal Anatomy of the Human Arm. Gritsenko V; Hardesty RL; Boots MT; Yakovenko S PLoS One; 2016; 11(10):e0164050. PubMed ID: 27736890 [TBL] [Abstract][Full Text] [Related]
2. Computational model of a primate arm: from hand position to joint angles, joint torques and muscle forces. Chan SS; Moran DW J Neural Eng; 2006 Dec; 3(4):327-37. PubMed ID: 17124337 [TBL] [Abstract][Full Text] [Related]
3. Interactions between interlimb and intralimb coordination during the performance of bimanual multijoint movements. Li Y; Levin O; Forner-Cordero A; Swinnen SP Exp Brain Res; 2005 Jun; 163(4):515-26. PubMed ID: 15657696 [TBL] [Abstract][Full Text] [Related]
4. Functional morphology of proximal hindlimb muscles in the frog Rana pipiens. Kargo WJ; Rome LC J Exp Biol; 2002 Jul; 205(Pt 14):1987-2004. PubMed ID: 12089205 [TBL] [Abstract][Full Text] [Related]
5. A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Holzbaur KR; Murray WM; Delp SL Ann Biomed Eng; 2005 Jun; 33(6):829-40. PubMed ID: 16078622 [TBL] [Abstract][Full Text] [Related]
6. Musculoskeletal model of the upper limb based on the visible human male dataset. Garner BA; Pandy MG Comput Methods Biomech Biomed Engin; 2001 Feb; 4(2):93-126. PubMed ID: 11264863 [TBL] [Abstract][Full Text] [Related]
7. Inter-joint coupling and joint angle synergies of human catching movements. Bockemühl T; Troje NF; Dürr V Hum Mov Sci; 2010 Feb; 29(1):73-93. PubMed ID: 19945187 [TBL] [Abstract][Full Text] [Related]
9. Effects of distal and proximal arm muscles fatigue on multi-joint movement organization. Huffenus AF; Amarantini D; Forestier N Exp Brain Res; 2006 Apr; 170(4):438-47. PubMed ID: 16369793 [TBL] [Abstract][Full Text] [Related]
10. Active and passive contributions to arm swing: Implications of the restriction of pelvis motion during human locomotion. Canton S; MacLellan MJ Hum Mov Sci; 2018 Feb; 57():314-323. PubMed ID: 28958710 [TBL] [Abstract][Full Text] [Related]
11. Musculoskeletal representation of a large repertoire of hand grasping actions in primates. Schaffelhofer S; Sartori M; Scherberger H; Farina D IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):210-20. PubMed ID: 25350935 [TBL] [Abstract][Full Text] [Related]
12. Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization. Sartori M; Farina D; Lloyd DG J Biomech; 2014 Nov; 47(15):3613-21. PubMed ID: 25458151 [TBL] [Abstract][Full Text] [Related]
13. Evaluating an integrated musculoskeletal model of the human arm. Soechting JF; Flanders M J Biomech Eng; 1997 Feb; 119(1):93-102. PubMed ID: 9083855 [TBL] [Abstract][Full Text] [Related]
14. Forward and inverse dynamics modeling of human shoulder-arm musculoskeletal system with scapulothoracic constraint. Hu T; Kühn J; Haddadin S Comput Methods Biomech Biomed Engin; 2020 Aug; 23(11):785-803. PubMed ID: 32552013 [TBL] [Abstract][Full Text] [Related]
15. Proximal arm kinematics affect grip force-load force coordination. Vermillion BC; Lum PS; Lee SW J Neurophysiol; 2015 Oct; 114(4):2265-77. PubMed ID: 26289460 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the effects of the Arm Light Exoskeleton on movement execution and muscle activities: a pilot study on healthy subjects. Pirondini E; Coscia M; Marcheschi S; Roas G; Salsedo F; Frisoli A; Bergamasco M; Micera S J Neuroeng Rehabil; 2016 Jan; 13():9. PubMed ID: 26801620 [TBL] [Abstract][Full Text] [Related]
17. Incorporating the length-dependent passive-force generating muscle properties of the extrinsic finger muscles into a wrist and finger biomechanical musculoskeletal model. Binder-Markey BI; Murray WM J Biomech; 2017 Aug; 61():250-257. PubMed ID: 28774467 [TBL] [Abstract][Full Text] [Related]
18. How musculotendon architecture and joint geometry affect the capacity of muscles to move and exert force on objects: a review with application to arm and forearm tendon transfer design. Zajac FE J Hand Surg Am; 1992 Sep; 17(5):799-804. PubMed ID: 1401783 [TBL] [Abstract][Full Text] [Related]
19. The development of lower limb musculoskeletal models with clinical relevance is dependent upon the fidelity of the mathematical description of the lower limb. Part 2: Patient-specific geometry. Cleather DJ; Bull AM Proc Inst Mech Eng H; 2012 Feb; 226(2):133-45. PubMed ID: 22468465 [TBL] [Abstract][Full Text] [Related]
20. A planar neuro-musculoskeletal arm model in post-stroke patients. Asghari M; Behzadipour S; Taghizadeh G Biol Cybern; 2018 Oct; 112(5):483-494. PubMed ID: 30056607 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]