These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 27738013)

  • 1. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier's principle.
    Buelens LC; Galvita VV; Poelman H; Detavernier C; Marin GB
    Science; 2016 Oct; 354(6311):449-452. PubMed ID: 27738013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium-looping reforming of methane realizes in situ CO
    Tian S; Yan F; Zhang Z; Jiang J
    Sci Adv; 2019 Apr; 5(4):eaav5077. PubMed ID: 30993203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dry reforming of methane to syngas: a potential alternative process for value added chemicals-a techno-economic perspective.
    Mondal K; Sasmal S; Badgandi S; Chowdhury DR; Nair V
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22267-22273. PubMed ID: 26939689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Study on Dry Reforming of Biogas for Syngas Production over Ni-Based Catalysts.
    Chein R; Yang Z
    ACS Omega; 2019 Dec; 4(25):20911-20922. PubMed ID: 31867481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Regenerative Ni-Doped CaTiO
    Jo S; Gilliard-AbdulAziz KL
    Small; 2024 Apr; ():e2401156. PubMed ID: 38686695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics for Steam and CO2 Reforming of Methane Over Ni/La/Al2O3 Catalyst.
    Park MH; Choi BK; Park YH; Moon DJ; Park NC; Kim YC
    J Nanosci Nanotechnol; 2015 Jul; 15(7):5255-8. PubMed ID: 26373118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fe-rich biomass derived char for microwave-assisted methane reforming with carbon dioxide.
    Li L; Yan K; Chen J; Feng T; Wang F; Wang J; Song Z; Ma C
    Sci Total Environ; 2019 Mar; 657():1357-1367. PubMed ID: 30677902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CO2 reforming of CH4 over CeO2-doped Ni/Al2O3 nanocatalyst treated by non-thermal plasma.
    Rahemi N; Haghighi M; Babaluo AA; Jafari MF; Estifaee P
    J Nanosci Nanotechnol; 2013 Jul; 13(7):4896-908. PubMed ID: 23901509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promising Utilization of CO
    Ray D; Chawdhury P; Subrahmanyam C
    ACS Omega; 2020 Jun; 5(23):14040-14050. PubMed ID: 32566870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic dry reforming of waste plastics from different waste treatment plants for production of synthesis gases.
    Saad JM; Williams PT
    Waste Manag; 2016 Dec; 58():214-220. PubMed ID: 27650631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon Dioxide Reforming of Methane using an Isothermal Redox Membrane Reactor.
    Michalsky R; Neuhaus D; Steinfeld A
    Energy Technol (Weinh); 2015 Jul; 3(7):784-789. PubMed ID: 31218206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure-Induced Enhancement in Chemical Looping Reforming of CH4 : A Thermodynamic Analysis with Fe-Based Oxygen Carriers.
    Zhang X; Cheng N; Zhang Y; Tian S; Han L
    ChemSusChem; 2024 Jun; ():e202400856. PubMed ID: 38894517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dry Reforming of Methane in a Gliding Arc Plasmatron: Towards a Better Understanding of the Plasma Chemistry.
    Cleiren E; Heijkers S; Ramakers M; Bogaerts A
    ChemSusChem; 2017 Oct; 10(20):4025-4036. PubMed ID: 28834403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging trends in hydrogen and synfuel generation: a state-of-the-art review.
    Alhassan M; Jalil AA; Owgi AHK; Hamid MYS; Bahari MB; Van Tran T; Nabgan W; Hatta AH; Khusnun NFB; Amusa AA; Nyakuma BB
    Environ Sci Pollut Res Int; 2024 Jun; 31(30):42640-42671. PubMed ID: 38902444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis.
    Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N
    Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biogas Conversion to Syngas Using Advanced Ni-Promoted Pyrochlore Catalysts: Effect of the CH
    le Saché E; Alvarez Moreno A; Reina TR
    Front Chem; 2021; 9():672419. PubMed ID: 33937208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promotional effect of magnesium oxide for a stable nickel-based catalyst in dry reforming of methane.
    Al-Fatesh AS; Kumar R; Fakeeha AH; Kasim SO; Khatri J; Ibrahim AA; Arasheed R; Alabdulsalam M; Lanre MS; Osman AI; Abasaeed AE; Bagabas A
    Sci Rep; 2020 Aug; 10(1):13861. PubMed ID: 32807834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can Steam- and CO-Rich Streams Be Produced Sequentially in the Isothermal Chemical Looping Super-Dry Reforming Scheme?
    Wang X; Wei J; Zhang J
    ACS Omega; 2020 Mar; 5(10):5401-5406. PubMed ID: 32201830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of Pd-Ag Membrane Reactors for Low-Temperature Dry Reforming of Biogas-A Simulation Study.
    Albano M; Madeira LM; Miguel CV
    Membranes (Basel); 2023 Jun; 13(7):. PubMed ID: 37504996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient electrochemical reforming of CH
    Lu J; Zhu C; Pan C; Lin W; Lemmon JP; Chen F; Li C; Xie K
    Sci Adv; 2018 Mar; 4(3):eaar5100. PubMed ID: 29670946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.