These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 27738105)
1. Mechanism of Four de Novo Designed Antimicrobial Peptides. Murray B; Pearson CS; Aranjo A; Cherupalla D; Belfort G J Biol Chem; 2016 Dec; 291(49):25706-25715. PubMed ID: 27738105 [TBL] [Abstract][Full Text] [Related]
2. Ib-AMP4 insertion causes surface rearrangement in the phospholipid bilayer of biomembranes: Implications from quartz-crystal microbalance with dissipation. Fan X; Korytowski A; Makky A; Tanaka M; Wink M Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):617-623. PubMed ID: 29106975 [TBL] [Abstract][Full Text] [Related]
3. Characterization of supported lipid bilayer disruption by chrysophsin-3 using QCM-D. Wang KF; Nagarajan R; Mello CM; Camesano TA J Phys Chem B; 2011 Dec; 115(51):15228-35. PubMed ID: 22085290 [TBL] [Abstract][Full Text] [Related]
4. Differentiating antimicrobial peptides interacting with lipid bilayer: Molecular signatures derived from quartz crystal microbalance with dissipation monitoring. Wang KF; Nagarajan R; Camesano TA Biophys Chem; 2015 Jan; 196():53-67. PubMed ID: 25307196 [TBL] [Abstract][Full Text] [Related]
5. Antimicrobial peptide alamethicin insertion into lipid bilayer: a QCM-D exploration. Wang KF; Nagarajan R; Camesano TA Colloids Surf B Biointerfaces; 2014 Apr; 116():472-81. PubMed ID: 24561501 [TBL] [Abstract][Full Text] [Related]
6. Characterisation of cell membrane interaction mechanisms of antimicrobial peptides by electrical bilayer recording. Priyadarshini D; Ivica J; Separovic F; de Planque MRR Biophys Chem; 2022 Feb; 281():106721. PubMed ID: 34808479 [TBL] [Abstract][Full Text] [Related]
7. Role of lipopolysaccharides and lipoteichoic acids on C-Chrysophsin-1 interactions with model Gram-positive and Gram-negative bacterial membranes. Alexander TE; Smith IM; Lipsky ZW; Lozeau LD; Camesano TA Biointerphases; 2020 May; 15(3):031007. PubMed ID: 32456440 [TBL] [Abstract][Full Text] [Related]
8. Elementary Processes and Mechanisms of Interactions of Antimicrobial Peptides with Membranes-Single Giant Unilamellar Vesicle Studies. Hasan M; Yamazaki M Adv Exp Med Biol; 2019; 1117():17-32. PubMed ID: 30980351 [TBL] [Abstract][Full Text] [Related]
9. The role of hydrophobic patches of de novo designed MSI-78 and VG16KRKP antimicrobial peptides on fragmenting model bilayer membranes. Won T; Mohid SA; Choi J; Kim M; Krishnamoorthy J; Biswas I; Bhunia A; Lee D Biophys Chem; 2023 May; 296():106981. PubMed ID: 36871366 [TBL] [Abstract][Full Text] [Related]
10. Mechanistic predictions of the influence of collagen-binding domain sequences on human LL37 interactions with model lipids using quartz crystal microbalance with dissipation. Lozeau LD; Rolle MW; Camesano TA Biointerphases; 2019 Apr; 14(2):021006. PubMed ID: 31039613 [TBL] [Abstract][Full Text] [Related]