These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 27738105)

  • 1. Mechanism of Four de Novo Designed Antimicrobial Peptides.
    Murray B; Pearson CS; Aranjo A; Cherupalla D; Belfort G
    J Biol Chem; 2016 Dec; 291(49):25706-25715. PubMed ID: 27738105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ib-AMP4 insertion causes surface rearrangement in the phospholipid bilayer of biomembranes: Implications from quartz-crystal microbalance with dissipation.
    Fan X; Korytowski A; Makky A; Tanaka M; Wink M
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):617-623. PubMed ID: 29106975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of supported lipid bilayer disruption by chrysophsin-3 using QCM-D.
    Wang KF; Nagarajan R; Mello CM; Camesano TA
    J Phys Chem B; 2011 Dec; 115(51):15228-35. PubMed ID: 22085290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiating antimicrobial peptides interacting with lipid bilayer: Molecular signatures derived from quartz crystal microbalance with dissipation monitoring.
    Wang KF; Nagarajan R; Camesano TA
    Biophys Chem; 2015 Jan; 196():53-67. PubMed ID: 25307196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial peptide alamethicin insertion into lipid bilayer: a QCM-D exploration.
    Wang KF; Nagarajan R; Camesano TA
    Colloids Surf B Biointerfaces; 2014 Apr; 116():472-81. PubMed ID: 24561501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterisation of cell membrane interaction mechanisms of antimicrobial peptides by electrical bilayer recording.
    Priyadarshini D; Ivica J; Separovic F; de Planque MRR
    Biophys Chem; 2022 Feb; 281():106721. PubMed ID: 34808479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of lipopolysaccharides and lipoteichoic acids on C-Chrysophsin-1 interactions with model Gram-positive and Gram-negative bacterial membranes.
    Alexander TE; Smith IM; Lipsky ZW; Lozeau LD; Camesano TA
    Biointerphases; 2020 May; 15(3):031007. PubMed ID: 32456440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elementary Processes and Mechanisms of Interactions of Antimicrobial Peptides with Membranes-Single Giant Unilamellar Vesicle Studies.
    Hasan M; Yamazaki M
    Adv Exp Med Biol; 2019; 1117():17-32. PubMed ID: 30980351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of hydrophobic patches of de novo designed MSI-78 and VG16KRKP antimicrobial peptides on fragmenting model bilayer membranes.
    Won T; Mohid SA; Choi J; Kim M; Krishnamoorthy J; Biswas I; Bhunia A; Lee D
    Biophys Chem; 2023 May; 296():106981. PubMed ID: 36871366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic predictions of the influence of collagen-binding domain sequences on human LL37 interactions with model lipids using quartz crystal microbalance with dissipation.
    Lozeau LD; Rolle MW; Camesano TA
    Biointerphases; 2019 Apr; 14(2):021006. PubMed ID: 31039613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of antimicrobial peptide activity by electrochemical impedance spectroscopy.
    Chang WK; Wimley WC; Searson PC; Hristova K; Merzlyakov M
    Biochim Biophys Acta; 2008 Oct; 1778(10):2430-6. PubMed ID: 18657512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational studies of membrane pore formation induced by Pin2.
    Velasco-Bolom JL; Garduño-Juárez R
    J Biomol Struct Dyn; 2022 Jul; 40(11):5060-5068. PubMed ID: 33397200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulations of Membrane-Disrupting Peptides II: AMP Piscidin 1 Favors Surface Defects over Pores.
    Perrin BS; Fu R; Cotten ML; Pastor RW
    Biophys J; 2016 Sep; 111(6):1258-1266. PubMed ID: 27653484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain.
    Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M
    Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phospholipid dependent mechanism of smp24, an α-helical antimicrobial peptide from scorpion venom.
    Harrison PL; Heath GR; Johnson BRG; Abdel-Rahman MA; Strong PN; Evans SD; Miller K
    Biochim Biophys Acta; 2016 Nov; 1858(11):2737-2744. PubMed ID: 27480803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimicrobial action of the cationic peptide, chrysophsin-3: a coarse-grained molecular dynamics study.
    Catte A; Wilson MR; Walker M; Oganesyan VS
    Soft Matter; 2018 Apr; 14(15):2796-2807. PubMed ID: 29595197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial peptides (AMPs): peptide structure and mode of action.
    Park Y; Hahm KS
    J Biochem Mol Biol; 2005 Sep; 38(5):507-16. PubMed ID: 16202228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation-Guided Rational de Novo Design of a Small Pore-Forming Antimicrobial Peptide.
    Chen CH; Starr CG; Troendle E; Wiedman G; Wimley WC; Ulmschneider JP; Ulmschneider MB
    J Am Chem Soc; 2019 Mar; 141(12):4839-4848. PubMed ID: 30839209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane targeting cationic antimicrobial peptides.
    Ciumac D; Gong H; Hu X; Lu JR
    J Colloid Interface Sci; 2019 Mar; 537():163-185. PubMed ID: 30439615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.