These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 27738105)
21. Effect of head group and curvature on binding of the antimicrobial peptide tritrpticin to lipid membranes. Bozelli JC; Sasahara ET; Pinto MR; Nakaie CR; Schreier S Chem Phys Lipids; 2012 May; 165(4):365-73. PubMed ID: 22209923 [TBL] [Abstract][Full Text] [Related]
22. Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides. Papo N; Shai Y Biochemistry; 2003 Jan; 42(2):458-66. PubMed ID: 12525173 [TBL] [Abstract][Full Text] [Related]
23. Exploring the arsenal of antimicrobial peptides: Mechanisms, diversity, and applications. Savitskaya A; Masso-Silva J; Haddaoui I; Enany S Biochimie; 2023 Nov; 214(Pt B):216-227. PubMed ID: 37499896 [TBL] [Abstract][Full Text] [Related]
24. Atomic Force Microscopy to Characterize Antimicrobial Peptide-Induced Defects in Model Supported Lipid Bilayers. Swana KW; Nagarajan R; Camesano TA Microorganisms; 2021 Sep; 9(9):. PubMed ID: 34576869 [TBL] [Abstract][Full Text] [Related]
26. Binding, folding and insertion of a β-hairpin peptide at a lipid bilayer surface: Influence of electrostatics and lipid tail packing. Reid KA; Davis CM; Dyer RB; Kindt JT Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):792-800. PubMed ID: 29291379 [TBL] [Abstract][Full Text] [Related]
27. Proposed Mechanisms of Tethered Antimicrobial Peptide Chrysophsin-1 as a Function of Tether Length Using QCM-D. Lozeau LD; Alexander TE; Camesano TA J Phys Chem B; 2015 Oct; 119(41):13142-51. PubMed ID: 26388176 [TBL] [Abstract][Full Text] [Related]
28. Antimicrobial properties and interaction of two Trp-substituted cationic antimicrobial peptides with a lipid bilayer. Bi X; Wang C; Dong W; Zhu W; Shang D J Antibiot (Tokyo); 2014 May; 67(5):361-8. PubMed ID: 24496141 [TBL] [Abstract][Full Text] [Related]
30. Toroidal pores formed by antimicrobial peptides show significant disorder. Sengupta D; Leontiadou H; Mark AE; Marrink SJ Biochim Biophys Acta; 2008 Oct; 1778(10):2308-17. PubMed ID: 18602889 [TBL] [Abstract][Full Text] [Related]
31. Bilayer lipid composition modulates the activity of dermaseptins, polycationic antimicrobial peptides. Duclohier H Eur Biophys J; 2006 May; 35(5):401-9. PubMed ID: 16477458 [TBL] [Abstract][Full Text] [Related]
32. Models of toxic beta-sheet channels of protegrin-1 suggest a common subunit organization motif shared with toxic alzheimer beta-amyloid ion channels. Jang H; Ma B; Lal R; Nussinov R Biophys J; 2008 Nov; 95(10):4631-42. PubMed ID: 18708452 [TBL] [Abstract][Full Text] [Related]
33. Toward the de novo design of antimicrobial peptides: Lack of correlation between peptide permeabilization of lipid vesicles and antimicrobial, cytolytic, or cytotoxic activity in living cells. He J; Krauson AJ; Wimley WC Biopolymers; 2014 Jan; 102(1):1-6. PubMed ID: 23893525 [TBL] [Abstract][Full Text] [Related]
34. Hydrophobic Control of the Bioactivity and Cytotoxicity of de Novo-Designed Antimicrobial Peptides. Gong H; Zhang J; Hu X; Li Z; Fa K; Liu H; Waigh TA; McBain A; Lu JR ACS Appl Mater Interfaces; 2019 Sep; 11(38):34609-34620. PubMed ID: 31448889 [TBL] [Abstract][Full Text] [Related]
35. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes. Lu JX; Damodaran K; Blazyk J; Lorigan GA Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398 [TBL] [Abstract][Full Text] [Related]
36. Molecular dynamics simulation of the membrane binding and disruption mechanisms by antimicrobial scorpion venom-derived peptides. Velasco-Bolom JL; Corzo G; Garduño-Juárez R J Biomol Struct Dyn; 2018 Jun; 36(8):2070-2084. PubMed ID: 28604248 [TBL] [Abstract][Full Text] [Related]
37. Methodology for identification of pore forming antimicrobial peptides from soy protein subunits β-conglycinin and glycinin. Xiang N; Lyu Y; Zhu X; Bhunia AK; Narsimhan G Peptides; 2016 Nov; 85():27-40. PubMed ID: 27612614 [TBL] [Abstract][Full Text] [Related]
38. Probing the disparate effects of arginine and lysine residues on antimicrobial peptide/bilayer association. Rice A; Wereszczynski J Biochim Biophys Acta Biomembr; 2017 Oct; 1859(10):1941-1950. PubMed ID: 28583830 [TBL] [Abstract][Full Text] [Related]
39. Pore formation and the key factors in antibacterial activity of aurein 1.2 and LLAA inside lipid bilayers, a molecular dynamics study. Cheraghi N; Hosseini M; Mohammadinejad S Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):347-356. PubMed ID: 29030244 [TBL] [Abstract][Full Text] [Related]
40. The lipid dependence of antimicrobial peptide activity is an unreliable experimental test for different pore models. Bobone S; Roversi D; Giordano L; De Zotti M; Formaggio F; Toniolo C; Park Y; Stella L Biochemistry; 2012 Dec; 51(51):10124-6. PubMed ID: 23228161 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]