These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 27738105)
41. Exploring the mechanism of photosensitizer conjugation on membrane perturbation of antimicrobial peptide: A multiscale molecular simulation study. Liu Y; Song M; Wu J; Xie S; Zhou Y; Liu L; Huang M; Jiang L; Xu P; Li J Int J Biol Macromol; 2023 Aug; 247():125698. PubMed ID: 37414326 [TBL] [Abstract][Full Text] [Related]
42. Membrane interaction of antimicrobial peptides using E. coli lipid extract as model bacterial cell membranes and SFG spectroscopy. Soblosky L; Ramamoorthy A; Chen Z Chem Phys Lipids; 2015 Apr; 187():20-33. PubMed ID: 25707312 [TBL] [Abstract][Full Text] [Related]
43. Antimicrobial Peptide Structures: From Model Membranes to Live Cells. Sani MA; Separovic F Chemistry; 2018 Jan; 24(2):286-291. PubMed ID: 29068097 [TBL] [Abstract][Full Text] [Related]
46. Molecular mechanism of action of β-hairpin antimicrobial peptide arenicin: oligomeric structure in dodecylphosphocholine micelles and pore formation in planar lipid bilayers. Shenkarev ZO; Balandin SV; Trunov KI; Paramonov AS; Sukhanov SV; Barsukov LI; Arseniev AS; Ovchinnikova TV Biochemistry; 2011 Jul; 50(28):6255-65. PubMed ID: 21627330 [TBL] [Abstract][Full Text] [Related]
47. Specific and selective peptide-membrane interactions revealed using quartz crystal microbalance. Mechler A; Praporski S; Atmuri K; Boland M; Separovic F; Martin LL Biophys J; 2007 Dec; 93(11):3907-16. PubMed ID: 17704161 [TBL] [Abstract][Full Text] [Related]
48. Deletion of all cysteines in tachyplesin I abolishes hemolytic activity and retains antimicrobial activity and lipopolysaccharide selective binding. Ramamoorthy A; Thennarasu S; Tan A; Gottipati K; Sreekumar S; Heyl DL; An FY; Shelburne CE Biochemistry; 2006 May; 45(20):6529-40. PubMed ID: 16700563 [TBL] [Abstract][Full Text] [Related]
49. Solution structure and membrane interactions of the antimicrobial peptide fallaxidin 4.1a: an NMR and QCM study. Sherman PJ; Jackway RJ; Gehman JD; Praporski S; McCubbin GA; Mechler A; Martin LL; Separovic F; Bowie JH Biochemistry; 2009 Dec; 48(50):11892-901. PubMed ID: 19894755 [TBL] [Abstract][Full Text] [Related]
50. Molecular Dynamics Simulation and Analysis of the Antimicrobial Peptide-Lipid Bilayer Interactions. Arasteh S; Bagheri M Methods Mol Biol; 2017; 1548():103-118. PubMed ID: 28013500 [TBL] [Abstract][Full Text] [Related]
51. Effect of lipid shape on toroidal pore formation and peptide orientation in lipid bilayers. Woo SY; Lee H Phys Chem Chem Phys; 2017 Aug; 19(32):21340-21349. PubMed ID: 28762427 [TBL] [Abstract][Full Text] [Related]
52. Cellular Membrane Composition Requirement by Antimicrobial and Anticancer Peptide GA-K4. Mishig-Ochir T; Gombosuren D; Jigjid A; Tuguldur B; Chuluunbaatar G; Urnukhsaikhan E; Pathak C; Lee BJ Protein Pept Lett; 2017; 24(3):197-205. PubMed ID: 27993125 [TBL] [Abstract][Full Text] [Related]
53. Potential of mean force for insertion of antimicrobial peptide melittin into a pore in mixed DOPC/DOPG lipid bilayer by molecular dynamics simulation. Lyu Y; Xiang N; Zhu X; Narsimhan G J Chem Phys; 2017 Apr; 146(15):155101. PubMed ID: 28433027 [TBL] [Abstract][Full Text] [Related]
54. The importance of membrane defects-lessons from simulations. Bennett WF; Tieleman DP Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900 [TBL] [Abstract][Full Text] [Related]
55. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers. Bennett WF; Hong CK; Wang Y; Tieleman DP J Chem Theory Comput; 2016 Sep; 12(9):4524-33. PubMed ID: 27529120 [TBL] [Abstract][Full Text] [Related]
56. Antimicrobial Peptide Structure and Mechanism of Action: A Focus on the Role of Membrane Structure. Lee TH; Hall KN; Aguilar MI Curr Top Med Chem; 2016; 16(1):25-39. PubMed ID: 26139112 [TBL] [Abstract][Full Text] [Related]
57. Antimicrobial Peptide Mechanisms Studied by Whole-Cell Deuterium NMR. Kumari S; Booth V Int J Mol Sci; 2022 Mar; 23(5):. PubMed ID: 35269882 [TBL] [Abstract][Full Text] [Related]
58. Spontaneous formation of structurally diverse membrane channel architectures from a single antimicrobial peptide. Wang Y; Chen CH; Hu D; Ulmschneider MB; Ulmschneider JP Nat Commun; 2016 Nov; 7():13535. PubMed ID: 27874004 [TBL] [Abstract][Full Text] [Related]
59. A QCM-D study of the concentration- and time-dependent interactions of human LL37 with model mammalian lipid bilayers. Lozeau LD; Rolle MW; Camesano TA Colloids Surf B Biointerfaces; 2018 Jul; 167():229-238. PubMed ID: 29660601 [TBL] [Abstract][Full Text] [Related]
60. Interaction of the Antimicrobial Peptide Aurein 1.2 and Charged Lipid Bilayer. Rai DK; Qian S Sci Rep; 2017 Jun; 7(1):3719. PubMed ID: 28623332 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]