BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

490 related articles for article (PubMed ID: 27738139)

  • 1. The multifaceted influence of histone deacetylases on DNA damage signalling and DNA repair.
    Roos WP; Krumm A
    Nucleic Acids Res; 2016 Dec; 44(21):10017-10030. PubMed ID: 27738139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interstrand Crosslink Repair as a Target for HDAC Inhibition.
    Nikolova T; Kiweler N; Krämer OH
    Trends Pharmacol Sci; 2017 Sep; 38(9):822-836. PubMed ID: 28687272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sirtuins (histone deacetylases III) in the cellular response to DNA damage--facts and hypotheses.
    Kruszewski M; Szumiel I
    DNA Repair (Amst); 2005 Nov; 4(11):1306-13. PubMed ID: 16084131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An insight into understanding the coupling between homologous recombination mediated DNA repair and chromatin remodeling mechanisms in plant genome: an update.
    Banerjee S; Roy S
    Cell Cycle; 2021 Sep; 20(18):1760-1784. PubMed ID: 34437813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histone deacetylase inhibitors as radiosensitisers: effects on DNA damage signalling and repair.
    Groselj B; Sharma NL; Hamdy FC; Kerr M; Kiltie AE
    Br J Cancer; 2013 Mar; 108(4):748-54. PubMed ID: 23361058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histone deacetylase inhibitors selectively target homology dependent DNA repair defective cells and elevate non-homologous endjoining activity.
    Smith S; Fox J; Mejia M; Ruangpradit W; Saberi A; Kim S; Choi Y; Oh S; Wang Y; Choi K; Li L; Hendrickson EA; Takeda S; Muller M; Myung K
    PLoS One; 2014; 9(1):e87203. PubMed ID: 24466340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of histone deacetylases enhances DNA damage repair in SCNT embryos.
    Bohrer RC; Duggavathi R; Bordignon V
    Cell Cycle; 2014; 13(13):2138-48. PubMed ID: 24841373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interplay between DNA repair and autophagy in cancer therapy.
    Zhang D; Tang B; Xie X; Xiao YF; Yang SM; Zhang JW
    Cancer Biol Ther; 2015; 16(7):1005-13. PubMed ID: 25985143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MOF and histone H4 acetylation at lysine 16 are critical for DNA damage response and double-strand break repair.
    Sharma GG; So S; Gupta A; Kumar R; Cayrou C; Avvakumov N; Bhadra U; Pandita RK; Porteus MH; Chen DJ; Cote J; Pandita TK
    Mol Cell Biol; 2010 Jul; 30(14):3582-95. PubMed ID: 20479123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Class I histone deacetylase inhibitors inhibit the retention of BRCA1 and 53BP1 at the site of DNA damage.
    Fukuda T; Wu W; Okada M; Maeda I; Kojima Y; Hayami R; Miyoshi Y; Tsugawa K; Ohta T
    Cancer Sci; 2015 Aug; 106(8):1050-6. PubMed ID: 26053117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the Effect of Histone Deacetylase Inhibitors on DNA Double-Strand Break Repair by Nonhomologous End Joining.
    Krämer OH; Diehl T; Roos WP
    Methods Mol Biol; 2023; 2589():293-302. PubMed ID: 36255632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Histone Deacetylase Activity in Malignant Melanoma Provokes RAD51 and FANCD2-Triggered Drug Resistance.
    Krumm A; Barckhausen C; Kücük P; Tomaszowski KH; Loquai C; Fahrer J; Krämer OH; Kaina B; Roos WP
    Cancer Res; 2016 May; 76(10):3067-77. PubMed ID: 26980768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histone deacetylase inhibitors decrease NHEJ both by acetylation of repair factors and trapping of PARP1 at DNA double-strand breaks in chromatin.
    Robert C; Nagaria PK; Pawar N; Adewuyi A; Gojo I; Meyers DJ; Cole PA; Rassool FV
    Leuk Res; 2016 Jun; 45():14-23. PubMed ID: 27064363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Curcumin suppresses multiple DNA damage response pathways and has potency as a sensitizer to PARP inhibitor.
    Ogiwara H; Ui A; Shiotani B; Zou L; Yasui A; Kohno T
    Carcinogenesis; 2013 Nov; 34(11):2486-97. PubMed ID: 23825154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterocyclic Analogs of Sulforaphane Trigger DNA Damage and Impede DNA Repair in Colon Cancer Cells: Interplay of HATs and HDACs.
    Okonkwo A; Mitra J; Johnson GS; Li L; Dashwood WM; Hegde ML; Yue C; Dashwood RH; Rajendran P
    Mol Nutr Food Res; 2018 Sep; 62(18):e1800228. PubMed ID: 29924908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ISWI chromatin remodeling complexes in the DNA damage response.
    Aydin ÖZ; Vermeulen W; Lans H
    Cell Cycle; 2014; 13(19):3016-25. PubMed ID: 25486562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting the Interplay between HDACs and DNA Damage Repair for Myeloma Therapy.
    Gkotzamanidou M; Terpou E; Kentepozidis N; Terpos E
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SIRT6 is a DNA double-strand break sensor.
    Onn L; Portillo M; Ilic S; Cleitman G; Stein D; Kaluski S; Shirat I; Slobodnik Z; Einav M; Erdel F; Akabayov B; Toiber D
    Elife; 2020 Jan; 9():. PubMed ID: 31995034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of valproic acid-initiated homologous recombination.
    Sha K; Winn LM
    Birth Defects Res B Dev Reprod Toxicol; 2010 Apr; 89(2):124-32. PubMed ID: 20437471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of chromatid-break-repair detects a homologous recombination to non-homologous end-joining switch with increasing load of DNA double-strand breaks.
    Murmann-Konda T; Soni A; Stuschke M; Iliakis G
    Mutat Res Genet Toxicol Environ Mutagen; 2021 Jul; 867():503372. PubMed ID: 34266628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.