These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 27738668)
1. Predicting the composition and formation of solid products in lithium-sulfur batteries by using an experimental phase diagram. Dibden JW; Smith JW; Zhou N; Garcia-Araez N; Owen JR Chem Commun (Camb); 2016 Oct; 52(87):12885-12888. PubMed ID: 27738668 [TBL] [Abstract][Full Text] [Related]
2. Thermodynamic aspect of sulfur, polysulfide anion and lithium polysulfide: plausible reaction path during discharge of lithium-sulfur battery. Tsuzuki S; Kaneko T; Sodeyama K; Umebayashi Y; Shinoda W; Seki S; Ueno K; Dokko K; Watanabe M Phys Chem Chem Phys; 2021 Mar; 23(11):6832-6840. PubMed ID: 33725042 [TBL] [Abstract][Full Text] [Related]
3. All-Solid-State Lithium-Sulfur Batteries Enhanced by Redox Mediators. Gao X; Zheng X; Tsao Y; Zhang P; Xiao X; Ye Y; Li J; Yang Y; Xu R; Bao Z; Cui Y J Am Chem Soc; 2021 Nov; 143(43):18188-18195. PubMed ID: 34677957 [TBL] [Abstract][Full Text] [Related]
4. Insight into sulfur reactions in Li-S batteries. Xu R; Belharouak I; Zhang X; Chamoun R; Yu C; Ren Y; Nie A; Shahbazian-Yassar R; Lu J; Li JC; Amine K ACS Appl Mater Interfaces; 2014 Dec; 6(24):21938-45. PubMed ID: 25425055 [TBL] [Abstract][Full Text] [Related]
5. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Zhou G; Tian H; Jin Y; Tao X; Liu B; Zhang R; Seh ZW; Zhuo D; Liu Y; Sun J; Zhao J; Zu C; Wu DS; Zhang Q; Cui Y Proc Natl Acad Sci U S A; 2017 Jan; 114(5):840-845. PubMed ID: 28096362 [TBL] [Abstract][Full Text] [Related]
6. PVP-Assisted Synthesis of Uniform Carbon Coated Li2S/CB for High-Performance Lithium-Sulfur Batteries. Chen L; Liu Y; Zhang F; Liu C; Shaw LL ACS Appl Mater Interfaces; 2015 Nov; 7(46):25748-56. PubMed ID: 26529481 [TBL] [Abstract][Full Text] [Related]
7. Ammonium Additives to Dissolve Lithium Sulfide through Hydrogen Binding for High-Energy Lithium-Sulfur Batteries. Pan H; Han KS; Vijayakumar M; Xiao J; Cao R; Chen J; Zhang J; Mueller KT; Shao Y; Liu J ACS Appl Mater Interfaces; 2017 Feb; 9(5):4290-4295. PubMed ID: 27367455 [TBL] [Abstract][Full Text] [Related]
8. Activated Li2S as a High-Performance Cathode for Rechargeable Lithium-Sulfur Batteries. Zu C; Klein M; Manthiram A J Phys Chem Lett; 2014 Nov; 5(22):3986-91. PubMed ID: 26276482 [TBL] [Abstract][Full Text] [Related]
9. Li2S Film Formation on Lithium Anode Surface of Li-S batteries. Liu Z; Bertolini S; Balbuena PB; Mukherjee PP ACS Appl Mater Interfaces; 2016 Feb; 8(7):4700-8. PubMed ID: 26836249 [TBL] [Abstract][Full Text] [Related]
10. Revealing the Electrochemical Charging Mechanism of Nanosized Li Zhang L; Sun D; Feng J; Cairns EJ; Guo J Nano Lett; 2017 Aug; 17(8):5084-5091. PubMed ID: 28731713 [TBL] [Abstract][Full Text] [Related]
11. In situ-formed Li2S in lithiated graphite electrodes for lithium-sulfur batteries. Fu Y; Zu C; Manthiram A J Am Chem Soc; 2013 Dec; 135(48):18044-7. PubMed ID: 24245559 [TBL] [Abstract][Full Text] [Related]
12. Progress in lithium-sulfur batteries: the effective role of a polysulfide-added electrolyte as buffer to prevent cathode dissolution. Lee DJ; Agostini M; Park JW; Sun YK; Hassoun J; Scrosati B ChemSusChem; 2013 Dec; 6(12):2245-8. PubMed ID: 23943264 [TBL] [Abstract][Full Text] [Related]
13. Hybrid Lithium-Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte. Yu X; Bi Z; Zhao F; Manthiram A ACS Appl Mater Interfaces; 2015 Aug; 7(30):16625-31. PubMed ID: 26161547 [TBL] [Abstract][Full Text] [Related]
14. Investigation of the Li-S Battery Mechanism by Real-Time Monitoring of the Changes of Sulfur and Polysulfide Species during the Discharge and Charge. Zheng D; Liu D; Harris JB; Ding T; Si J; Andrew S; Qu D; Yang XQ; Qu D ACS Appl Mater Interfaces; 2017 Feb; 9(5):4326-4332. PubMed ID: 27612389 [TBL] [Abstract][Full Text] [Related]
15. Revealing reaction mechanisms of nanoconfined Li Liu Z; Deng H; Hu W; Gao F; Zhang S; Balbuena PB; Mukherjee PP Phys Chem Chem Phys; 2018 May; 20(17):11713-11721. PubMed ID: 29683168 [TBL] [Abstract][Full Text] [Related]
16. Stabilized Lithium-Metal Surface in a Polysulfide-Rich Environment of Lithium-Sulfur Batteries. Zu C; Manthiram A J Phys Chem Lett; 2014 Aug; 5(15):2522-7. PubMed ID: 26277939 [TBL] [Abstract][Full Text] [Related]
17. A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation. Li X; Banis M; Lushington A; Yang X; Sun Q; Zhao Y; Liu C; Li Q; Wang B; Xiao W; Wang C; Li M; Liang J; Li R; Hu Y; Goncharova L; Zhang H; Sham TK; Sun X Nat Commun; 2018 Oct; 9(1):4509. PubMed ID: 30375387 [TBL] [Abstract][Full Text] [Related]
18. A Li Yen YJ; Chung SH ACS Appl Mater Interfaces; 2021 Dec; 13(49):58712-58722. PubMed ID: 34846840 [TBL] [Abstract][Full Text] [Related]
19. In situ Raman spectroscopy of sulfur speciation in lithium-sulfur batteries. Wu HL; Huff LA; Gewirth AA ACS Appl Mater Interfaces; 2015 Jan; 7(3):1709-19. PubMed ID: 25543831 [TBL] [Abstract][Full Text] [Related]
20. Turning on Lithium-Sulfur Full Batteries at -10 °C. Kim H; Hwang JY; Ham YG; Choi HN; Alfaruqi MH; Kim J; Yoon CS; Sun YK ACS Nano; 2023 Jul; 17(14):14032-14042. PubMed ID: 37428961 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]