These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 27738683)

  • 1. The role of relative rate constants in determining surface state phenomena at semiconductor-liquid interfaces.
    Iqbal A; Hossain MS; Bevan KH
    Phys Chem Chem Phys; 2016 Oct; 18(42):29466-29477. PubMed ID: 27738683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpreting interfacial semiconductor-liquid capacitive characteristics impacted by surface states: a theoretical and experimental study of CuGaS
    Miao B; Sangaré K; Iqbal A; Marsan B; Bevan KH
    Phys Chem Chem Phys; 2020 Sep; 22(35):19631-19642. PubMed ID: 32869781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semiconductor-Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting.
    Nellist MR; Laskowski FA; Lin F; Mills TJ; Boettcher SW
    Acc Chem Res; 2016 Apr; 49(4):733-40. PubMed ID: 27035051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voltage-Induced Inversion of Band Bending and Photovoltages at Semiconductor/Liquid Interfaces.
    Li R; Yoc-Bautista MG; Weng S; Cai Z; Zhao B; Cronin SB
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):9355-9361. PubMed ID: 38319802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semiconductor Ultramicroelectrodes: Platforms for Studying Charge-Transfer Processes at Semiconductor/Liquid Interfaces.
    Acharya S; Lancaster M; Maldonado S
    Anal Chem; 2018 Oct; 90(20):12261-12269. PubMed ID: 30264995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting.
    Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of the photoexcited electron at the chromophore-semiconductor interface.
    Prezhdo OV; Duncan WR; Prezhdo VV
    Acc Chem Res; 2008 Feb; 41(2):339-48. PubMed ID: 18281950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hot Electrons at Solid-Liquid Interfaces: A Large Chemoelectric Effect during the Catalytic Decomposition of Hydrogen Peroxide.
    Nedrygailov II; Lee C; Moon SY; Lee H; Park JY
    Angew Chem Int Ed Engl; 2016 Aug; 55(36):10859-62. PubMed ID: 27374493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excited State Dynamics of Ru10 Cluster Interfacing Anatase TiO2(101) Surface and Liquid Water.
    Huang S; Inerbaev TM; Kilin DS
    J Phys Chem Lett; 2014 Aug; 5(16):2823-9. PubMed ID: 26278085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic doping and redox-potential tuning in colloidal semiconductor nanocrystals.
    Schimpf AM; Knowles KE; Carroll GM; Gamelin DR
    Acc Chem Res; 2015 Jul; 48(7):1929-37. PubMed ID: 26121552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable oxygen activation for catalytic organic oxidation: Schottky junction versus plasmonic effects.
    Long R; Mao K; Gong M; Zhou S; Hu J; Zhi M; You Y; Bai S; Jiang J; Zhang Q; Wu X; Xiong Y
    Angew Chem Int Ed Engl; 2014 Mar; 53(12):3205-9. PubMed ID: 24520003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemicophysical surface treatment and the experimental demonstration of Schottky-Mott rules for metal/semiconductor heterostructure interfaces.
    Motayed A; Mohammad SN
    J Chem Phys; 2005 Nov; 123(19):194703. PubMed ID: 16321106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing p-type semiconductor-metal hybrid structures for improved photocatalysis.
    Wang L; Ge J; Wang A; Deng M; Wang X; Bai S; Li R; Jiang J; Zhang Q; Luo Y; Xiong Y
    Angew Chem Int Ed Engl; 2014 May; 53(20):5107-11. PubMed ID: 24700571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A photovoltaic device structure based on internal electron emission.
    McFarland EW; Tang J
    Nature; 2003 Feb; 421(6923):616-8. PubMed ID: 12571591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic and optical properties of dye-sensitized TiO₂ interfaces.
    Pastore M; Selloni A; Fantacci S; De Angelis F
    Top Curr Chem; 2014; 347():1-45. PubMed ID: 24488437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge transport in nanoscale junctions.
    Albrecht T; Kornyshev A; Bjørnholm T
    J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An electrodeposited inhomogeneous metal-insulator-semiconductor junction for efficient photoelectrochemical water oxidation.
    Hill JC; Landers AT; Switzer JA
    Nat Mater; 2015 Nov; 14(11):1150-5. PubMed ID: 26366847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [NiFeSe]-hydrogenase chemistry.
    Wombwell C; Caputo CA; Reisner E
    Acc Chem Res; 2015 Nov; 48(11):2858-65. PubMed ID: 26488197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge regulation at semiconductor-electrolyte interfaces.
    Fleharty ME; van Swol F; Petsev DN
    J Colloid Interface Sci; 2015 Jul; 449():409-15. PubMed ID: 25595623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of photoinduced self-exchange reactions at molecule-semiconductor interfaces by transient polarization spectroscopy: lateral intermolecular energy and hole transfer across sensitized TiO2 thin films.
    Ardo S; Meyer GJ
    J Am Chem Soc; 2011 Oct; 133(39):15384-96. PubMed ID: 21861499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.