BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

550 related articles for article (PubMed ID: 27738714)

  • 1. Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat (Triticum aestivum L.).
    Gahlaut V; Jaiswal V; Kumar A; Gupta PK
    Theor Appl Genet; 2016 Nov; 129(11):2019-2042. PubMed ID: 27738714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diverse expression pattern of wheat transcription factors against abiotic stresses in wheat species.
    Baloglu MC; Inal B; Kavas M; Unver T
    Gene; 2014 Oct; 550(1):117-22. PubMed ID: 25130909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of the wheat NAC transcription factor TaSNAC4-3A gene confers drought tolerance in transgenic Arabidopsis.
    Mei F; Chen B; Li F; Zhang Y; Kang Z; Wang X; Mao H
    Plant Physiol Biochem; 2021 Mar; 160():37-50. PubMed ID: 33454635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement.
    Baillo EH; Kimotho RN; Zhang Z; Xu P
    Genes (Basel); 2019 Sep; 10(10):. PubMed ID: 31575043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TaWRKY31, a novel WRKY transcription factor in wheat, participates in regulation of plant drought stress tolerance.
    Ge M; Tang Y; Guan Y; Lv M; Zhou C; Ma H; Lv J
    BMC Plant Biol; 2024 Jan; 24(1):27. PubMed ID: 38172667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MYB-CC transcription factor, TaMYBsm3, cloned from wheat is involved in drought tolerance.
    Li Y; Zhang S; Zhang N; Zhang W; Li M; Liu B; Shi Z
    BMC Plant Biol; 2019 Apr; 19(1):143. PubMed ID: 30987595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A wheat R2R3 MYB gene TaMpc1-D4 negatively regulates drought tolerance in transgenic Arabidopsis and wheat.
    Li X; Tang Y; Li H; Luo W; Zhou C; Zhang L; Lv J
    Plant Sci; 2020 Oct; 299():110613. PubMed ID: 32900449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis.
    He GH; Xu JY; Wang YX; Liu JM; Li PS; Chen M; Ma YZ; Xu ZS
    BMC Plant Biol; 2016 May; 16(1):116. PubMed ID: 27215938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of wheat homeodomain-leucine zipper family genes and functional analysis of TaHDZ5-6A in drought tolerance in transgenic Arabidopsis.
    Li S; Chen N; Li F; Mei F; Wang Z; Cheng X; Kang Z; Mao H
    BMC Plant Biol; 2020 Jan; 20(1):50. PubMed ID: 32005165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The specific MYB binding sites bound by TaMYB in the GAPCp2/3 promoters are involved in the drought stress response in wheat.
    Zhang L; Song Z; Li F; Li X; Ji H; Yang S
    BMC Plant Biol; 2019 Aug; 19(1):366. PubMed ID: 31426752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of wheat drought-responsive MYB transcription factors involved in the regulation of cuticle biosynthesis.
    Bi H; Luang S; Li Y; Bazanova N; Morran S; Song Z; Perera MA; Hrmova M; Borisjuk N; Lopato S
    J Exp Bot; 2016 Oct; 67(18):5363-5380. PubMed ID: 27489236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco.
    Tang Y; Liu M; Gao S; Zhang Z; Zhao X; Zhao C; Zhang F; Chen X
    Physiol Plant; 2012 Mar; 144(3):210-24. PubMed ID: 22082019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis.
    Huang Q; Wang Y; Li B; Chang J; Chen M; Li K; Yang G; He G
    BMC Plant Biol; 2015 Nov; 15():268. PubMed ID: 26536863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expansin gene TaEXPA2 positively regulates drought tolerance in transgenic wheat (Triticum aestivum L.).
    Yang J; Zhang G; An J; Li Q; Chen Y; Zhao X; Wu J; Wang Y; Hao Q; Wang W; Wang W
    Plant Sci; 2020 Sep; 298():110596. PubMed ID: 32771153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-Wide Characterization of
    Wang D; Cao Z; Wang W; Zhu W; Hao X; Fang Z; Liu S; Wang X; Zhao C; Tang Y
    Biomed Res Int; 2020; 2020():9708324. PubMed ID: 33224986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome-wide identification of bread wheat WRKY transcription factors in response to drought stress.
    Okay S; Derelli E; Unver T
    Mol Genet Genomics; 2014 Oct; 289(5):765-81. PubMed ID: 24748053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of Drought-Tolerant Transgenic Wheat: Achievements and Limitations.
    Khan S; Anwar S; Yu S; Sun M; Yang Z; Gao ZQ
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31288392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach.
    Tran LS; Nishiyama R; Yamaguchi-Shinozaki K; Shinozaki K
    GM Crops; 2010; 1(1):32-9. PubMed ID: 21912210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DREB/CBF expression in wheat and barley using the stress-inducible promoters of HD-Zip I genes: impact on plant development, stress tolerance and yield.
    Yang Y; Al-Baidhani HHJ; Harris J; Riboni M; Li Y; Mazonka I; Bazanova N; Chirkova L; Sarfraz Hussain S; Hrmova M; Haefele S; Lopato S; Kovalchuk N
    Plant Biotechnol J; 2020 Mar; 18(3):829-844. PubMed ID: 31487424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The potential of transcription factor-based genetic engineering in improving crop tolerance to drought.
    Rabara RC; Tripathi P; Rushton PJ
    OMICS; 2014 Oct; 18(10):601-14. PubMed ID: 25118806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.