These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 27738761)

  • 1. Robust phase-waves in chains of half-center oscillators.
    Zhang C; Lewis TJ
    J Math Biol; 2017 Jun; 74(7):1627-1656. PubMed ID: 27738761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuromorphic Instantiation of Spiking Half-Centered Oscillator Models for Central Pattern Generation.
    Athota A; Caccam B; Kochis R; Ray A; Cauwenberghs G; Broccard FD
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6703-6706. PubMed ID: 34892646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural mechanism of optimal limb coordination in crustacean swimming.
    Zhang C; Guy RD; Mulloney B; Zhang Q; Lewis TJ
    Proc Natl Acad Sci U S A; 2014 Sep; 111(38):13840-5. PubMed ID: 25201976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of long-range coupling in crayfish swimmeret phase-locking.
    Spardy LE; Lewis TJ
    Biol Cybern; 2018 Aug; 112(4):305-321. PubMed ID: 29569056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity-dependent modulation of adaptation produces a constant burst proportion in a model of the lamprey spinal locomotor generator.
    Ullström M; Kotaleski JH; Tegnér J; Aurell E; Grillner S; Lansner A
    Biol Cybern; 1998 Jul; 79(1):1-14. PubMed ID: 9742673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How does the crayfish swimmeret system work? Insights from nearest-neighbor coupled oscillator models.
    Skinner FK; Kopell N; Mulloney B
    J Comput Neurosci; 1997 Apr; 4(2):151-60. PubMed ID: 9154521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase response properties of half-center oscillators.
    Zhang C; Lewis TJ
    J Comput Neurosci; 2013 Aug; 35(1):55-74. PubMed ID: 23456595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural mechanisms potentially contributing to the intersegmental phase lag in lamprey.I. Segmental oscillations dependent on reciprocal inhibition.
    Kotaleski JH; Grillner S; Lansner A
    Biol Cybern; 1999 Oct; 81(4):317-30. PubMed ID: 10541935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase response characteristics of model neurons determine which patterns are expressed in a ring circuit model of gait generation.
    Canavier CC; Butera RJ; Dror RO; Baxter DA; Clark JW; Byrne JH
    Biol Cybern; 1997 Dec; 77(6):367-80. PubMed ID: 9433752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A salamander's flexible spinal network for locomotion, modeled at two levels of abstraction.
    Knüsel J; Bicanski A; Ryczko D; Cabelguen JM; Ijspeert AJ
    Integr Comp Biol; 2013 Aug; 53(2):269-82. PubMed ID: 23784700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entrainment ranges of forced phase oscillators.
    Previte JP; Sheils N; Hoffman KA; Kiemel T; Tytell ED
    J Math Biol; 2011 Apr; 62(4):589-603. PubMed ID: 20502920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric and transient properties of reciprocal activity of antagonists during the paw-shake response in the cat.
    Parker JR; Klishko AN; Prilutsky BI; Cymbalyuk GS
    PLoS Comput Biol; 2021 Dec; 17(12):e1009677. PubMed ID: 34962927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust formation of metachronal waves in directional chains of phase oscillators.
    Quillen AC
    Phys Rev E; 2023 Mar; 107(3-1):034401. PubMed ID: 37073033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of phase shifts of sensory inputs in walking revealed by means of phase reduction.
    Yeldesbay A; Tóth T; Daun S
    J Comput Neurosci; 2018 Jun; 44(3):313-339. PubMed ID: 29589252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical analysis and simulations of the neural circuit for locomotion in lampreys.
    Zhaoping L; Lewis A; Scarpetta S
    Phys Rev Lett; 2004 May; 92(19):198106. PubMed ID: 15169452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A modeling approach on why simple central pattern generators are built of irregular neurons.
    Reyes MB; Carelli PV; Sartorelli JC; Pinto RD
    PLoS One; 2015; 10(3):e0120314. PubMed ID: 25799556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Family Structures Reveals Robustness or Sensitivity of Bursting Activity to Parameter Variations in a Half-Center Oscillator (HCO) Model.
    Doloc-Mihu A; Calabrese RL
    eNeuro; 2016; 3(4):. PubMed ID: 27595135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematic control of walking.
    Lacquaniti F; Ivanenko YP; Zago M
    Arch Ital Biol; 2002 Oct; 140(4):263-72. PubMed ID: 12228979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metachronal waves in concentrations of swimming Turbatrix aceti nematodes and an oscillator chain model for their coordinated motions.
    Quillen AC; Peshkov A; Wright E; McGaffigan S
    Phys Rev E; 2021 Jul; 104(1-1):014412. PubMed ID: 34412226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formal analysis of resonance entrainment by central pattern generator.
    Futakata Y; Iwasaki T
    J Math Biol; 2008 Aug; 57(2):183-207. PubMed ID: 18175118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.