BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 27738942)

  • 41. Time-dependent alginate/polyvinyl alcohol hydrogels as injectable cell carriers.
    Cho SH; Lim SM; Han DK; Yuk SH; Im GI; Lee JH
    J Biomater Sci Polym Ed; 2009; 20(7-8):863-76. PubMed ID: 19454157
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Selective Osmotic Shock (SOS)-Based Islet Isolation for Microencapsulation.
    Enck K; McQuilling JP; Orlando G; Tamburrini R; Sivanandane S; Opara EC
    Methods Mol Biol; 2017; 1479():191-198. PubMed ID: 27738936
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Determination of the Mechanical Strength of Microcapsules.
    Darabbie MD; Opara EC
    Methods Mol Biol; 2017; 1479():111-118. PubMed ID: 27738930
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A preliminary approach to the repair of myocardial infarction using adipose tissue-derived stem cells encapsulated in magnetic resonance-labelled alginate microspheres in a porcine model.
    Gomez-Mauricio RG; Acarregui A; Sánchez-Margallo FM; Crisóstomo V; Gallo I; Hernández RM; Pedraz JL; Orive G; Martín-Cancho MF
    Eur J Pharm Biopharm; 2013 May; 84(1):29-39. PubMed ID: 23266493
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Encapsulation of cells in alginate gels.
    Sánchez P; Hernández RM; Pedraz JL; Orive G
    Methods Mol Biol; 2013; 1051():313-25. PubMed ID: 23934814
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Formulation and stability evaluation of 3D alginate beads potentially useful for cumulus-oocyte complexes culture.
    Dorati R; Genta I; Ferrari M; Vigone G; Merico V; Garagna S; Zuccotti M; Conti B
    J Microencapsul; 2016; 33(2):137-45. PubMed ID: 26791322
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of alginate compressed matrices as prolonged drug delivery systems.
    Giunchedi P; Gavini E; Moretti MD; Pirisino G
    AAPS PharmSciTech; 2000 Jul; 1(3):E19. PubMed ID: 14727905
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microencapsulated Cells for Cancer Therapy.
    Saenz del Burgo L; Ciriza J; Hernández RM; Orive G; Pedraz JL
    Methods Mol Biol; 2017; 1479():261-272. PubMed ID: 27738943
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Programmed cell delivery from biodegradable microcapsules for tissue repair.
    Draghi L; Brunelli D; Farè S; Tanzi MC
    J Biomater Sci Polym Ed; 2015; 26(15):1002-12. PubMed ID: 26230911
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Alginate encapsulation parameters influence the differentiation of microencapsulated embryonic stem cell aggregates.
    Wilson JL; Najia MA; Saeed R; McDevitt TC
    Biotechnol Bioeng; 2014 Mar; 111(3):618-31. PubMed ID: 24166004
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Towards a fully synthetic substitute of alginate: optimization of a thermal gelation/chemical cross-linking scheme ("tandem" gelation) for the production of beads and liquid-core capsules.
    Cellesi F; Weber W; Fussenegger M; Hubbell JA; Tirelli N
    Biotechnol Bioeng; 2004 Dec; 88(6):740-9. PubMed ID: 15532084
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hydrogel Encapsulation Facilitates Rapid-Cooling Cryopreservation of Stem Cell-Laden Core-Shell Microcapsules as Cell-Biomaterial Constructs.
    Zhao G; Liu X; Zhu K; He X
    Adv Healthc Mater; 2017 Dec; 6(23):. PubMed ID: 29178480
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering.
    Lee GS; Park JH; Shin US; Kim HW
    Acta Biomater; 2011 Aug; 7(8):3178-86. PubMed ID: 21539944
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Separation of empty microcapsules after microencapsulation of porcine neonatal islets.
    Shin S; Yoo YJ
    Biotechnol Lett; 2013 Dec; 35(12):2185-91. PubMed ID: 23907670
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Alginate Encapsulation of Human Hepatocytes and Assessment of Microbeads.
    Mitry RR; Jitraruch S; Iansante V; Dhawan A
    Methods Mol Biol; 2017; 1506():273-281. PubMed ID: 27830560
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electromagnetic manipulation enabled calcium alginate Janus microsphere for targeted delivery of mesenchymal stem cells.
    Thomas RG; Unnithan AR; Moon MJ; Surendran SP; Batgerel T; Park CH; Kim CS; Jeong YY
    Int J Biol Macromol; 2018 Apr; 110():465-471. PubMed ID: 29355634
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Formation of alginate microspheres produced using emulsification technique.
    Heng PW; Chan LW; Wong TW
    J Microencapsul; 2003; 20(3):401-13. PubMed ID: 12881119
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effect of the co-immobilization of human osteoprogenitors and endothelial cells within alginate microspheres on mineralization in a bone defect.
    Grellier M; Granja PL; Fricain JC; Bidarra SJ; Renard M; Bareille R; Bourget C; Amédée J; Barbosa MA
    Biomaterials; 2009 Jul; 30(19):3271-8. PubMed ID: 19299013
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A self-setting iPSMSC-alginate-calcium phosphate paste for bone tissue engineering.
    Wang P; Song Y; Weir MD; Sun J; Zhao L; Simon CG; Xu HH
    Dent Mater; 2016 Feb; 32(2):252-63. PubMed ID: 26743965
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mesenchymal stem cells and alginate microcarriers for craniofacial bone tissue engineering: A review.
    Saltz A; Kandalam U
    J Biomed Mater Res A; 2016 May; 104(5):1276-84. PubMed ID: 26826060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.