These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27739052)

  • 1. Mercury removal during growth of mercury tolerant and self-aggregating Yarrowia spp.
    Oyetibo GO; Miyauchi K; Suzuki H; Endo G
    AMB Express; 2016 Dec; 6(1):99. PubMed ID: 27739052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-oxidation of elemental mercury during growth of mercury resistant yeasts in simulated hydrosphere.
    Oyetibo GO; Miyauchi K; Suzuki H; Endo G
    J Hazard Mater; 2019 Jul; 373():243-249. PubMed ID: 30921575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular mercury sequestration by exopolymeric substances produced by Yarrowia spp.: Thermodynamics, equilibria, and kinetics studies.
    Oyetibo GO; Miyauchi K; Suzuki H; Ishikawa S; Endo G
    J Biosci Bioeng; 2016 Dec; 122(6):701-707. PubMed ID: 27405269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mercury bioremoval by Yarrowia strains isolated from sediments of mercury-polluted estuarine water.
    Oyetibo GO; Ishola ST; Ikeda-Ohtsubo W; Miyauchi K; Ilori MO; Endo G
    Appl Microbiol Biotechnol; 2015 Apr; 99(8):3651-7. PubMed ID: 25520168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of extracellular polymeric substances on the bioaccumulation of mercury and its toxicity toward the cyanobacterium Microcystis aeruginosa.
    Chen HW; Huang WJ; Wu TH; Hon CL
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(12):1370-9. PubMed ID: 25072768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioconversion of Hg
    Huang ZS; Wei ZS; Xiao XL; Li BL; Ming S; Cheng XL; Jiao HY
    Chemosphere; 2020 Apr; 244():125544. PubMed ID: 32050341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple-pathway remediation of mercury contamination by a versatile selenite-reducing bacterium.
    Wang X; He Z; Luo H; Zhang M; Zhang D; Pan X; Gadd GM
    Sci Total Environ; 2018 Feb; 615():615-623. PubMed ID: 28988098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-oxidation of Elemental Mercury into Mercury Sulfide and Humic Acid-Bound Mercury by Sulfate Reduction for Hg
    Huang Z; Wei Z; Xiao X; Tang M; Li B; Ming S; Cheng X
    Environ Sci Technol; 2019 Nov; 53(21):12923-12934. PubMed ID: 31589025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between biogenic selenium nanoparticles and goethite colloids and consequence for remediation of elemental mercury contaminated groundwater.
    Wang X; Zhang D; Qian H; Liang Y; Pan X; Gadd GM
    Sci Total Environ; 2018 Feb; 613-614():672-678. PubMed ID: 28938209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aquatic Bacteria
    Zhao M; Zheng G; Kang X; Zhang X; Guo J; Wang S; Chen Y; Xue L
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Efficiency Mercury Sorption by Dead Biomass of
    Vega-Páez JD; Rivas RE; Dussán-Garzón J
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31010243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new method for mercury removal.
    Essa AM; Macaskie LE; Brown NL
    Biotechnol Lett; 2005 Nov; 27(21):1649-55. PubMed ID: 16247669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.
    Svoboda K; Hartman M; Šyc M; Pohořelý M; Kameníková P; Jeremiáš M; Durda T
    J Environ Manage; 2016 Jan; 166():499-511. PubMed ID: 26588812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury detoxification by absorption, mercuric ion reductase, and exopolysaccharides: a comprehensive study.
    Singh S; Kumar V
    Environ Sci Pollut Res Int; 2020 Aug; 27(22):27181-27201. PubMed ID: 31001776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oligotrophy as a major driver of mercury bioaccumulation in medium-to high-trophic level consumers: A marine ecosystem-comparative study.
    Chouvelon T; Cresson P; Bouchoucha M; Brach-Papa C; Bustamante P; Crochet S; Marco-Miralles F; Thomas B; Knoery J
    Environ Pollut; 2018 Feb; 233():844-854. PubMed ID: 29149758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interaction of mercury and methylmercury with chalcogenide nanoparticles.
    Wang X; Seelen EA; Mazrui NM; Kerns P; Suib SL; Zhao J; Mason RP
    Environ Pollut; 2019 Dec; 255(Pt 3):113346. PubMed ID: 31627051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volatilization and sorption of dissolved mercury by metallic iron of different particle sizes: implications for treatment of mercury contaminated water effluents.
    Vernon JD; Bonzongo JC
    J Hazard Mater; 2014 Jul; 276():408-14. PubMed ID: 24929302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental assessment of mercury dispersion, transformation and bioavailability in the Lake Victoria Goldfields, Tanzania.
    Ikingura JR; Akagi H; Mujumba J; Messo C
    J Environ Manage; 2006 Oct; 81(2):167-73. PubMed ID: 16782263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mercury volatilization by R factor systems in Escherichia coli isolated from aquatic environments of India.
    Gupta N; Ali A
    Curr Microbiol; 2004 Feb; 48(2):88-96. PubMed ID: 15057474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical basis of mercury remediation and bioaccumulation by Enterobacter sp. EMB21.
    Sinha A; Kumar S; Khare SK
    Appl Biochem Biotechnol; 2013 Jan; 169(1):256-67. PubMed ID: 23179279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.