These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 27739053)
1. Spintronic Transport in Armchair Graphene Nanoribbon with Ferromagnetic Electrodes: Half-Metallic Properties. Liu H; Kondo H; Ohno T Nanoscale Res Lett; 2016 Dec; 11(1):456. PubMed ID: 27739053 [TBL] [Abstract][Full Text] [Related]
2. Spin-dependent transport for armchair-edge graphene nanoribbons between ferromagnetic leads. Zhou B; Chen X; Zhou B; Ding KH; Zhou G J Phys Condens Matter; 2011 Apr; 23(13):135304. PubMed ID: 21415476 [TBL] [Abstract][Full Text] [Related]
3. Electronic transport through zigzag/armchair graphene nanoribbon heterojunctions. Li XF; Wang LL; Chen KQ; Luo Y J Phys Condens Matter; 2012 Mar; 24(9):095801. PubMed ID: 22317831 [TBL] [Abstract][Full Text] [Related]
4. Structural and electronic properties of graphene nanotube-nanoribbon hybrids. Lee CH; Yang CK; Lin MF; Chang CP; Su WS Phys Chem Chem Phys; 2011 Mar; 13(9):3925-31. PubMed ID: 21210053 [TBL] [Abstract][Full Text] [Related]
5. Ultranarrow heterojunctions of armchair-graphene nanoribbons as resonant-tunnelling devices. Sánchez-Ochoa F; Zhang J; Du Y; Huang Z; Canto G; Springborg M; Cocoletzi GH Phys Chem Chem Phys; 2019 Dec; 21(45):24867-24875. PubMed ID: 31517350 [TBL] [Abstract][Full Text] [Related]
6. Ferromagnetic half-metal with high Curie temperature in Cr P nanoribbons: good material for spintronic applications. Movlarooy T; Vatankhahan A Phys Chem Chem Phys; 2023 Sep; 25(35):24155-24162. PubMed ID: 37655592 [TBL] [Abstract][Full Text] [Related]
7. Origin of spin polarization in an edge boron doped zigzag graphene nanoribbon: a potential spin filter. Chakrabarty S; Wasey AHMA; Thapa R; Das GP Nanotechnology; 2018 Aug; 29(34):345203. PubMed ID: 29862988 [TBL] [Abstract][Full Text] [Related]
8. Half-filled energy bands induced negative differential resistance in nitrogen-doped graphene. Li XF; Lian KY; Qiu Q; Luo Y Nanoscale; 2015 Mar; 7(9):4156-62. PubMed ID: 25665635 [TBL] [Abstract][Full Text] [Related]
9. Density functional theory investigation of negative differential resistance and efficient spin filtering in niobium-doped armchair graphene nanoribbons. Kumar J; Nemade HB; Giri PK Phys Chem Chem Phys; 2017 Nov; 19(43):29685-29692. PubMed ID: 29085937 [TBL] [Abstract][Full Text] [Related]
10. Half metallicity and ferromagnetism of vanadium nitride nanoribbons: a first-principles study. Ghosh A; Kar M; Majumder C; Sarkar P Phys Chem Chem Phys; 2021 Jan; 23(2):1127-1138. PubMed ID: 33346763 [TBL] [Abstract][Full Text] [Related]
11. The graphene/Au/Ni interface and its application in the construction of a graphene spin filter. Rybkina AA; Rybkin AG; Adamchuk VK; Marchenko D; Varykhalov A; Sánchez-Barriga J; Shikin AM Nanotechnology; 2013 Jul; 24(29):295201. PubMed ID: 23799659 [TBL] [Abstract][Full Text] [Related]
12. Phonon-drag thermopower in an armchair graphene nanoribbon. Bhargavi KS; Kubakaddi SS J Phys Condens Matter; 2011 Jul; 23(27):275303. PubMed ID: 21697579 [TBL] [Abstract][Full Text] [Related]
13. Adsorbing the magnetic superhalogen MnCl Li H; Yu G; Zhang Z; Ma Y; Huang X; Chen W RSC Adv; 2018 Apr; 8(24):13167-13177. PubMed ID: 35542555 [TBL] [Abstract][Full Text] [Related]
14. A high performance N-doped graphene nanoribbon based spintronic device applicable with a wide range of adatoms. Rezapour MR; Lee G; Kim KS Nanoscale Adv; 2020 Dec; 2(12):5905-5911. PubMed ID: 36133856 [TBL] [Abstract][Full Text] [Related]
15. I-V characteristics of graphene nanoribbon/h-BN heterojunctions and resonant tunneling. Wakai T; Sakamoto S; Tomiya M J Phys Condens Matter; 2018 Jul; 30(26):265302. PubMed ID: 29770774 [TBL] [Abstract][Full Text] [Related]
16. Effect of contact area on electron transport through graphene-metal interface. Liu H; Kondo H; Ohno T J Chem Phys; 2013 Aug; 139(7):074703. PubMed ID: 23968103 [TBL] [Abstract][Full Text] [Related]
17. The integrated spintronic functionalities of an individual high-spin state spin-crossover molecule between graphene nanoribbon electrodes. Zhu L; Zou F; Gao JH; Fu YS; Gao GY; Fu HH; Wu MH; Lü JT; Yao KL Nanotechnology; 2015 Aug; 26(31):315201. PubMed ID: 26180074 [TBL] [Abstract][Full Text] [Related]
18. Chromium porphyrin arrays as spintronic devices. Cho WJ; Cho Y; Min SK; Kim WY; Kim KS J Am Chem Soc; 2011 Jun; 133(24):9364-9. PubMed ID: 21612202 [TBL] [Abstract][Full Text] [Related]
19. Armchair-edged nanoribbon as a bottleneck to electronic total transmission through a topologically nontrivial graphene nanojunction. Jiang L; Liu Z; Zhao X; Zheng Y J Phys Condens Matter; 2016 Mar; 28(8):085501. PubMed ID: 26828909 [TBL] [Abstract][Full Text] [Related]
20. Theoretical Investigation of the Interfaces and Mechanisms of Induced Spin Polarization of 1D Narrow Zigzag Graphene- and h-BN Nanoribbons on a SrO-Terminated LSMO(001) Surface. Avramov P; Kuzubov AA; Kuklin AV; Lee H; Kovaleva EA; Sakai S; Entani S; Naramoto H; Sorokin PB J Phys Chem A; 2017 Jan; 121(3):680-689. PubMed ID: 28075136 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]