These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 27739094)
21. The oxazolidinone eperezolid binds to the 50S ribosomal subunit and competes with binding of chloramphenicol and lincomycin. Lin AH; Murray RW; Vidmar TJ; Marotti KR Antimicrob Agents Chemother; 1997 Oct; 41(10):2127-31. PubMed ID: 9333036 [TBL] [Abstract][Full Text] [Related]
22. In vitro protein folding by E. coli ribosome: unfolded protein splitting 70S to interact with 50S subunit. Basu A; Samanta D; Das D; Chowdhury S; Bhattacharya A; Ghosh J; Das A; Dasgupta C Biochem Biophys Res Commun; 2008 Feb; 366(2):598-603. PubMed ID: 18068121 [TBL] [Abstract][Full Text] [Related]
23. Structural basis for the context-specific action of the classic peptidyl transferase inhibitor chloramphenicol. Syroegin EA; Flemmich L; Klepacki D; Vazquez-Laslop N; Micura R; Polikanov YS Nat Struct Mol Biol; 2022 Feb; 29(2):152-161. PubMed ID: 35165455 [TBL] [Abstract][Full Text] [Related]
24. Characterization of a high-throughput screening assay for inhibitors of elongation factor p and ribosomal peptidyl transferase activity. Swaney S; McCroskey M; Shinabarger D; Wang Z; Turner BA; Parker CN J Biomol Screen; 2006 Oct; 11(7):736-42. PubMed ID: 16928980 [TBL] [Abstract][Full Text] [Related]
25. Berberine analog of chloramphenicol exhibits a distinct mode of action and unveils ribosome plasticity. Batool Z; Pavlova JA; Paranjpe MN; Tereshchenkov AG; Lukianov DA; Osterman IA; Bogdanov AA; Sumbatyan NV; Polikanov YS Structure; 2024 Sep; 32(9):1429-1442.e6. PubMed ID: 39019034 [TBL] [Abstract][Full Text] [Related]
27. Mechanism of fusidic acid inhibition of RRF- and EF-G-dependent splitting of the bacterial post-termination ribosome. Borg A; Pavlov M; Ehrenberg M Nucleic Acids Res; 2016 Apr; 44(7):3264-75. PubMed ID: 27001509 [TBL] [Abstract][Full Text] [Related]
28. Novel roles for classical factors at the interface between translation termination and initiation. Karimi R; Pavlov MY; Buckingham RH; Ehrenberg M Mol Cell; 1999 May; 3(5):601-9. PubMed ID: 10360176 [TBL] [Abstract][Full Text] [Related]
29. Visualization of ribosome-recycling factor on the Escherichia coli 70S ribosome: functional implications. Agrawal RK; Sharma MR; Kiel MC; Hirokawa G; Booth TM; Spahn CM; Grassucci RA; Kaji A; Frank J Proc Natl Acad Sci U S A; 2004 Jun; 101(24):8900-5. PubMed ID: 15178758 [TBL] [Abstract][Full Text] [Related]
30. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Schlünzen F; Zarivach R; Harms J; Bashan A; Tocilj A; Albrecht R; Yonath A; Franceschi F Nature; 2001 Oct; 413(6858):814-21. PubMed ID: 11677599 [TBL] [Abstract][Full Text] [Related]
31. Erythromycin- and chloramphenicol-induced ribosomal assembly defects are secondary effects of protein synthesis inhibition. Siibak T; Peil L; Xiong L; Mankin A; Remme J; Tenson T Antimicrob Agents Chemother; 2009 Feb; 53(2):563-71. PubMed ID: 19029332 [TBL] [Abstract][Full Text] [Related]
32. Protein folding in Escherichia coli: role of 23S ribosomal RNA. Chattopadhyay S; Pal S; Pal D; Sarkar D; Chandra S; Das Gupta C Biochim Biophys Acta; 1999 Jan; 1429(2):293-8. PubMed ID: 9989214 [TBL] [Abstract][Full Text] [Related]
33. Evidence for a role of initiation factor 3 in recycling of ribosomal complexes stalled on mRNAs in Escherichia coli. Singh NS; Das G; Seshadri A; Sangeetha R; Varshney U Nucleic Acids Res; 2005; 33(17):5591-601. PubMed ID: 16199751 [TBL] [Abstract][Full Text] [Related]
34. Inhibition of antiassociation activity of translation initiation factor 3 by paromomycin. Hirokawa G; Kaji H; Kaji A Antimicrob Agents Chemother; 2007 Jan; 51(1):175-80. PubMed ID: 17088492 [TBL] [Abstract][Full Text] [Related]
35. The mode of action of griseoviridin at the ribosome level. Barbacid M; Contreras A; Vazquez D Biochim Biophys Acta; 1975 Jul; 395(3):347-54. PubMed ID: 1096949 [TBL] [Abstract][Full Text] [Related]
36. Inhibition of peptide bond formation by pleuromutilins: the structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin. Schlünzen F; Pyetan E; Fucini P; Yonath A; Harms JM Mol Microbiol; 2004 Dec; 54(5):1287-94. PubMed ID: 15554968 [TBL] [Abstract][Full Text] [Related]
37. Context-Specific Action of Ribosomal Antibiotics. Vázquez-Laslop N; Mankin AS Annu Rev Microbiol; 2018 Sep; 72():185-207. PubMed ID: 29906204 [TBL] [Abstract][Full Text] [Related]
38. Ribosome recycling factor and release factor 3 action promotes TnaC-peptidyl-tRNA Dropoff and relieves ribosome stalling during tryptophan induction of tna operon expression in Escherichia coli. Gong M; Cruz-Vera LR; Yanofsky C J Bacteriol; 2007 Apr; 189(8):3147-55. PubMed ID: 17293419 [TBL] [Abstract][Full Text] [Related]
39. Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyl transferase region of 23S ribosomal RNA. Moazed D; Noller HF Biochimie; 1987 Aug; 69(8):879-84. PubMed ID: 3122849 [TBL] [Abstract][Full Text] [Related]
40. The Intersubunit Bridge B1b of the Bacterial Ribosome Facilitates Initiation of Protein Synthesis and Maintenance of Translational Fidelity. Lilleorg S; Reier K; Remme J; Liiv A J Mol Biol; 2017 Apr; 429(7):1067-1080. PubMed ID: 28238762 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]