BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 27739099)

  • 1. The toxicity of creosote-treated wood to Pacific herring embryos and characterization of polycyclic aromatic hydrocarbons near creosoted pilings in Juneau, Alaska.
    Duncan DL; Carls MG; Rice SD; Stekoll MS
    Environ Toxicol Chem; 2017 May; 36(5):1261-1269. PubMed ID: 27739099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polycyclic aromatic hydrocarbons in Pacific herring (Clupea pallasii) embryos exposed to creosote-treated pilings during a piling-removal project in a nearshore marine habitat of Puget Sound.
    West JE; Carey AJ; Ylitalo GM; Incardona JP; Edmunds RC; Sloan CA; Niewolny LA; Lanksbury JA; O'Neill SM
    Mar Pollut Bull; 2019 May; 142():253-262. PubMed ID: 31232302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of diffusible creosote-derived compounds on development in Pacific herring (Clupea pallasi).
    Vines CA; Robbins T; Griffin FJ; Cherr GN
    Aquat Toxicol; 2000 Dec; 51(2):225-39. PubMed ID: 11064126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response of zooplankton and phytoplankton communities to creosote-impregnated Douglas fir pilings in freshwater microcosms.
    Sibley PK; Harris ML; Bestari KT; Steele TA; Robinson RD; Gensemer RW; Day KE; Solomon KR
    Arch Environ Contam Toxicol; 2004 Jul; 47(1):56-66. PubMed ID: 15346778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Later life swimming performance and persistent heart damage following subteratogenic PAH mixture exposure in the Atlantic killifish (Fundulus heteroclitus).
    Brown DR; Thompson J; Chernick M; Hinton DE; Di Giulio RT
    Environ Toxicol Chem; 2017 Dec; 36(12):3246-3253. PubMed ID: 28585726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An evaluation of background levels and sources of polycyclic aromatic hydrocarbons in naturally spawned embryos of Pacific herring (Clupea pallasii) from Puget Sound, Washington, USA.
    West JE; O'Neill SM; Ylitalo GM; Incardona JP; Doty DC; Dutch ME
    Sci Total Environ; 2014 Nov; 499():114-24. PubMed ID: 25181043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polycyclic aromatic hydrocarbons disrupt axial development in sea urchin embryos through a beta-catenin dependent pathway.
    Pillai MC; Vines CA; Wikramanayake AH; Cherr GN
    Toxicology; 2003 Apr; 186(1-2):93-108. PubMed ID: 12604173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Urban stormwater and crude oil injury pathways converge on the developing heart of a shore-spawning marine forage fish.
    Harding LB; Tagal M; Ylitalo GM; Incardona JP; Davis JW; Scholz NL; McIntyre JK
    Aquat Toxicol; 2020 Dec; 229():105654. PubMed ID: 33161306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental exposure to a complex PAH mixture causes persistent behavioral effects in naive Fundulus heteroclitus (killifish) but not in a population of PAH-adapted killifish.
    Brown DR; Bailey JM; Oliveri AN; Levin ED; Di Giulio RT
    Neurotoxicol Teratol; 2016; 53():55-63. PubMed ID: 26548404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring of polycyclic aromatic hydrocarbons and water-extractable phenols in creosotes and creosote-treated woods made and procurable in Japan.
    Ikarashi Y; Kaniwa MA; Tsuchiya T
    Chemosphere; 2005 Sep; 60(9):1279-87. PubMed ID: 16018899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of both potency and mechanism in dose-response analysis: an example from exposure of Pacific herring (Clupea pallasi) embryos to low concentrations of weathered crude oil.
    Neff JM; Page DS; Landrum PF; Chapman PM
    Mar Pollut Bull; 2013 Feb; 67(1-2):7-15. PubMed ID: 23321595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the PAH and water-extractable phenols content in used cross ties from the French rail network.
    Marcotte S; Poisson T; Portet-Koltalo F; Aubrays M; Basle J; de Bort M; Giraud M; Nguyen Hoang T; Octau C; Pasquereau J; Blondeel C
    Chemosphere; 2014 Sep; 111():1-6. PubMed ID: 24997892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resistance to polycyclic aromatic hydrocarbon toxicity and associated bioenergetic consequences in a population of Fundulus heteroclitus.
    Lindberg CD; Jayasundara N; Kozal JS; Leuthner TC; Di Giulio RT
    Ecotoxicology; 2017 Apr; 26(3):435-448. PubMed ID: 28213827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fish (Fundulus heteroclitus) populations with different exposure histories differ in tolerance of creosote-contaminated sediments.
    Ownby DR; Newman MC; Mulvey M; Vogelbein WK; Unger MA; Arzayus LF
    Environ Toxicol Chem; 2002 Sep; 21(9):1897-902. PubMed ID: 12206429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and FATE of PAH-contaminated sediments at the Wyckoff/Eagle Harbor Superfund Site.
    Brenner RC; Magar VS; Ickes JA; Abbott JE; Stout SA; Crecelius EA; Bingler LS
    Environ Sci Technol; 2002 Jun; 36(12):2605-13. PubMed ID: 12099456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioassay-directed identification of toxic organic compounds in creosote-contaminated groundwater.
    Hartnik T; Norli HR; Eggen T; Breedveld GD
    Chemosphere; 2007 Jan; 66(3):435-43. PubMed ID: 16872665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VOCs and PAHs emissions from creosote-treated wood in a field storage area.
    Gallego E; Roca FJ; Perales JF; Guardino X; Berenguer MJ
    Sci Total Environ; 2008 Aug; 402(1):130-8. PubMed ID: 18501954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhalation and dermal exposure of workers during timber impregnation with creosote and subsequent processing of impregnated wood.
    Hebisch R; Karmann J; Schäferhenrich A; Göen T; Berger M; Poppek U; Roitzsch M
    Environ Res; 2020 Feb; 181():108877. PubMed ID: 31722805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polycyclic aromatic hydrocarbon (PAH) levels in environmental media potentially impacted by reused or stored creosote-treated railway ties.
    Cargouët M; Jeannee N; Vidart B; Gregori P
    Environ Sci Pollut Res Int; 2018 Jun; 25(18):17409-17424. PubMed ID: 29654466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creosote toxicity to photosynthesis and plant growth in aquatic microcosms.
    Marwood CA; Bestari KT; Gensemer RW; Solomon KR; Greenberg BM
    Environ Toxicol Chem; 2003 May; 22(5):1075-85. PubMed ID: 12729217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.