These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27739233)

  • 1. Alleno-Acetylenic Cage (AAC) Receptors: Chiroptical Switching and Enantioselective Complexation of trans-1,2-Dimethylcyclohexane in a Diaxial Conformation.
    Gropp C; Trapp N; Diederich F
    Angew Chem Int Ed Engl; 2016 Nov; 55(46):14444-14449. PubMed ID: 27739233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dispersion and Halogen-Bonding Interactions: Binding of the Axial Conformers of Monohalo- and (±)-trans-1,2-Dihalocyclohexanes in Enantiopure Alleno-Acetylenic Cages.
    Gropp C; Husch T; Trapp N; Reiher M; Diederich F
    J Am Chem Soc; 2017 Sep; 139(35):12190-12200. PubMed ID: 28809485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen-Bonded Networks: Molecular Recognition of Cyclic Alcohols in Enantiopure Alleno-Acetylenic Cage Receptors.
    Gropp C; Husch T; Trapp N; Reiher M; Diederich F
    Angew Chem Int Ed Engl; 2018 Dec; 57(50):16296-16301. PubMed ID: 30417963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantiopure Alleno-Acetylenic Helicages Containing Multiple Binding Sites.
    Gidron O; Jirásek M; Wörle M; Diederich F
    Chemistry; 2016 Nov; 22(45):16172-16177. PubMed ID: 27723155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiroptical detection of nonchromophoric, achiral guests by enantiopure alleno-acetylenic helicages.
    Gidron O; Ebert MO; Trapp N; Diederich F
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13614-8. PubMed ID: 25384621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Recognition and Cocrystallization of Methylated and Halogenated Fragments of Danicalipin A by Enantiopure Alleno-Acetylenic Cage Receptors.
    Gropp C; Fischer S; Husch T; Trapp N; Carreira EM; Diederich F
    J Am Chem Soc; 2020 Mar; 142(10):4749-4755. PubMed ID: 32114766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complexation and Structure Elucidation of the Axial Conformers of Mono- and (±)-
    Gropp C; Trapp N
    Chimia (Aarau); 2018 Apr; 72(4):245-248. PubMed ID: 29720318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantiopure laterally functionalized alleno-acetylenic macrocycles: synthesis, chiroptical properties, and self-assembly in aqueous media.
    Tzirakis MD; Alberti MN; Weissman H; Rybtchinski B; Diederich F
    Chemistry; 2014 Dec; 20(49):16070-3. PubMed ID: 25346432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Outstanding chiroptical properties: a signature of enantiomerically pure alleno-acetylenic macrocycles and monodisperse acyclic oligomers.
    Donckele EJ; Gidron O; Trapp N; Diederich F
    Chemistry; 2014 Jul; 20(31):9558-66. PubMed ID: 25043446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Recognition with Resorcin[4]arene Cavitands: Switching, Halogen-Bonded Capsules, and Enantioselective Complexation.
    Gropp C; Quigley BL; Diederich F
    J Am Chem Soc; 2018 Feb; 140(8):2705-2717. PubMed ID: 29451782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enantiopure, monodisperse alleno-acetylenic cyclooligomers: effect of symmetry and conformational flexibility on the chiroptical properties of carbon-rich compounds.
    Rivera-Fuentes P; Nieto-Ortega B; Schweizer WB; Navarrete JT; Casado J; Diederich F
    Chemistry; 2011 Mar; 17(14):3876-85. PubMed ID: 21416492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enantiomerically pure alleno-acetylenic macrocycles: synthesis, solid-state structures, chiroptical properties, and electron localization function analysis.
    Rivera-Fuentes P; Alonso-Gómez JL; Petrovic AG; Seiler P; Santoro F; Harada N; Berova N; Rzepa HS; Diederich F
    Chemistry; 2010 Aug; 16(32):9796-807. PubMed ID: 20680946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational behavior of pyrazine-bridged and mixed-bridged cavitands: a general model for solvent effects on thermal "vase-kite" switching.
    Roncucci P; Pirondini L; Paderni G; Massera C; Dalcanale E; Azov VA; Diederich F
    Chemistry; 2006 Jun; 12(18):4775-84. PubMed ID: 16671048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homochiral [2]Catenane and Bis[2]catenane from Alleno-Acetylenic Helicates - A Highly Selective Narcissistic Self-Sorting Process.
    Gidron O; Jirásek M; Trapp N; Ebert MO; Zhang X; Diederich F
    J Am Chem Soc; 2015 Oct; 137(39):12502-5. PubMed ID: 26380872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Covalent Organic Helical Cage with Remarkable Chiroptical Amplification.
    Míguez-Lago S; Llamas-Saiz AL; Magdalena Cid M; Alonso-Gómez JL
    Chemistry; 2015 Dec; 21(50):18085-8. PubMed ID: 26449173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optically active tetra-tert-butyl-P(5)-deltacyclene epimers: preparation, spectroscopy, dynamic equilibriums, H/D exchange, and transition-metal complex chemistry.
    Rohwer L; Höhn C; Autschbach J; Bauer W; Heinemann FW; Huguet Torrell S; Keller I; Shubina TE; Steffen J; Zenneck U
    Chemistry; 2014 May; 20(19):5708-20. PubMed ID: 24677381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absolute configuration and host-guest binding of chiral porphyrin-cages by a combined chiroptical and theoretical approach.
    Ouyang J; Swartjes A; Geerts M; Gilissen PJ; Wang D; Teeuwen PCP; Tinnemans P; Vanthuyne N; Chentouf S; Rutjes FPJT; Naubron JV; Crassous J; Elemans JAAW; Nolte RJM
    Nat Commun; 2020 Sep; 11(1):4776. PubMed ID: 32963222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, resolution, and chiroptical properties of hemicryptophane cage controlling the chirality of propeller arrangement of a C
    Long A; Jean M; Albalat M; Vanthuyne N; Giorgi M; Górecki M; Dutasta JP; Martinez A
    Chirality; 2019 Nov; 31(11):910-916. PubMed ID: 31476080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox-Triggered Chirality Switching and Guest-Capture/Release with a Pillar[6]arene-Based Molecular Universal Joint.
    Xiao C; Wu W; Liang W; Zhou D; Kanagaraj K; Cheng G; Su D; Zhong Z; Chruma JJ; Yang C
    Angew Chem Int Ed Engl; 2020 May; 59(21):8094-8098. PubMed ID: 31958199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic molecular propeller: supramolecular chirality sensing by enhanced chiroptical response through the transmission of point chirality to mobile helicity.
    Katoono R; Kawai H; Fujiwara K; Suzuki T
    J Am Chem Soc; 2009 Nov; 131(46):16896-904. PubMed ID: 19874032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.