These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 27739361)

  • 81. Delivery of anticancer drugs.
    Zee-Cheng RK; Cheng CC
    Methods Find Exp Clin Pharmacol; 1989; 11(7-8):439-529. PubMed ID: 2689812
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Nanomedicines Targeting the Tumor Microenvironment.
    Tong R; Langer R
    Cancer J; 2015; 21(4):314-21. PubMed ID: 26222084
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Drug penetration in solid tumours.
    Minchinton AI; Tannock IF
    Nat Rev Cancer; 2006 Aug; 6(8):583-92. PubMed ID: 16862189
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Paradigm shift in bacteriophage-mediated delivery of anticancer drugs: from targeted 'magic bullets' to self-navigated 'magic missiles'.
    Petrenko VA; Gillespie JW
    Expert Opin Drug Deliv; 2017 Mar; 14(3):373-384. PubMed ID: 27466706
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Cubosome formulations stabilized by a dansyl-conjugated block copolymer for possible nanomedicine applications.
    Murgia S; Falchi AM; Meli V; Schillén K; Lippolis V; Monduzzi M; Rosa A; Schmidt J; Talmon Y; Bizzarri R; Caltagirone C
    Colloids Surf B Biointerfaces; 2015 May; 129():87-94. PubMed ID: 25829131
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology.
    Prabhakar U; Maeda H; Jain RK; Sevick-Muraca EM; Zamboni W; Farokhzad OC; Barry ST; Gabizon A; Grodzinski P; Blakey DC
    Cancer Res; 2013 Apr; 73(8):2412-7. PubMed ID: 23423979
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Supramolecular "Trojan Horse" for Nuclear Delivery of Dual Anticancer Drugs.
    Cai Y; Shen H; Zhan J; Lin M; Dai L; Ren C; Shi Y; Liu J; Gao J; Yang Z
    J Am Chem Soc; 2017 Mar; 139(8):2876-2879. PubMed ID: 28191948
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Mind the gap: a survey of how cancer drug carriers are susceptible to the gap between research and practice.
    Stirland DL; Nichols JW; Miura S; Bae YH
    J Control Release; 2013 Dec; 172(3):1045-64. PubMed ID: 24096014
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Nanostructured lipid carriers, solid lipid nanoparticles, and polymeric nanoparticles: which kind of drug delivery system is better for glioblastoma chemotherapy?
    Qu J; Zhang L; Chen Z; Mao G; Gao Z; Lai X; Zhu X; Zhu J
    Drug Deliv; 2016 Nov; 23(9):3408-3416. PubMed ID: 27181462
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Challenges, expectations and limits for nanoparticles-based therapeutics in cancer: a focus on nano-albumin-bound drugs.
    Fanciullino R; Ciccolini J; Milano G
    Crit Rev Oncol Hematol; 2013 Dec; 88(3):504-13. PubMed ID: 23871532
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Recognition Sites for Cancer-targeting Drug Delivery Systems.
    Guan S; Zhang Q; Bao J; Hu R; Czech T; Tang J
    Curr Drug Metab; 2019; 20(10):815-834. PubMed ID: 31580248
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery.
    Li C; Yang D; Ma P; Chen Y; Wu Y; Hou Z; Dai Y; Zhao J; Sui C; Lin J
    Small; 2013 Dec; 9(24):4150-9. PubMed ID: 23843254
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Relay Drug Delivery for Amplifying Targeting Signal and Enhancing Anticancer Efficacy.
    Hu Q; Sun W; Qian C; Bomba HN; Xin H; Gu Z
    Adv Mater; 2017 Apr; 29(13):. PubMed ID: 28160337
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Subcellular Performance of Nanoparticles in Cancer Therapy.
    Liu CG; Han YH; Kankala RK; Wang SB; Chen AZ
    Int J Nanomedicine; 2020; 15():675-704. PubMed ID: 32103936
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Light-activated nanoimpeller-controlled drug release in cancer cells.
    Lu J; Choi E; Tamanoi F; Zink JI
    Small; 2008 Apr; 4(4):421-6. PubMed ID: 18383576
    [No Abstract]   [Full Text] [Related]  

  • 96. Advances in nuclei targeted delivery of nanoparticles for the management of cancer.
    Goyal P; Malviya R
    Biochim Biophys Acta Rev Cancer; 2023 May; 1878(3):188881. PubMed ID: 36965678
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Advances in living cell-based anticancer therapeutics.
    Dong H; Xu X; Wang L; Mo R
    Biomater Sci; 2020 May; 8(9):2344-2365. PubMed ID: 32254876
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Patents in chemotherapy: nanoparticles as drug-delivery vehicles.
    Talat A; Khan AU
    Pharm Pat Anal; 2020 Jul; 9(4):117-119. PubMed ID: 32815487
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Targeted delivery system of nanobiomaterials in anticancer therapy: from cells to clinics.
    Jin SE; Jin HE; Hong SS
    Biomed Res Int; 2014; 2014():814208. PubMed ID: 24672796
    [TBL] [Abstract][Full Text] [Related]  

  • 100. EGF receptor-targeted nanocarriers for enhanced cancer treatment.
    Master AM; Sen Gupta A
    Nanomedicine (Lond); 2012 Dec; 7(12):1895-906. PubMed ID: 23249333
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.