These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 27739401)

  • 1. Review of real brain-controlled wheelchairs.
    Fernández-Rodríguez Á; Velasco-Álvarez F; Ron-Angevin R
    J Neural Eng; 2016 Dec; 13(6):061001. PubMed ID: 27739401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of disability EEG based wheelchair control system: Coherent taxonomy, open challenges and recommendations.
    Al-Qaysi ZT; Zaidan BB; Zaidan AA; Suzani MS
    Comput Methods Programs Biomed; 2018 Oct; 164():221-237. PubMed ID: 29958722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain-Computer Interface application: auditory serial interface to control a two-class motor-imagery-based wheelchair.
    Ron-Angevin R; Velasco-Álvarez F; Fernández-Rodríguez Á; Díaz-Estrella A; Blanca-Mena MJ; Vizcaíno-Martín FJ
    J Neuroeng Rehabil; 2017 May; 14(1):49. PubMed ID: 28558741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Indoor simulation training system for brain-controlled wheelchair based on steady-state visual evoked potentials].
    Wang J; Wang K; Chen X; Wang H; Xu S; Liu M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Jun; 37(3):502-511. PubMed ID: 32597093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel brain-controlled wheelchair combined with computer vision and augmented reality.
    Liu K; Yu Y; Liu Y; Tang J; Liang X; Chu X; Zhou Z
    Biomed Eng Online; 2022 Jul; 21(1):50. PubMed ID: 35883092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of assistive wheelchair system directly steered by human thoughts.
    Li J; Liang J; Zhao Q; Li J; Hong K; Zhang L
    Int J Neural Syst; 2013 Jun; 23(3):1350013. PubMed ID: 23627660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of a Wheelchair in an Indoor Environment Based on a Brain-Computer Interface and Automated Navigation.
    Zhang R; Li Y; Yan Y; Zhang H; Wu S; Yu T; Gu Z
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):128-39. PubMed ID: 26054072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control Systems and Electronic Instrumentation Applied to Autonomy in Wheelchair Mobility: The State of the Art.
    Callejas-Cuervo M; González-Cely AX; Bastos-Filho T
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33171924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain-Computer Interface for Control of Wheelchair Using Fuzzy Neural Networks.
    Abiyev RH; Akkaya N; Aytac E; Günsel I; Çağman A
    Biomed Res Int; 2016; 2016():9359868. PubMed ID: 27777953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A navigation system for increasing the autonomy and the security of powered wheelchairs.
    Fioretti S; Leo T; Longhi S
    IEEE Trans Rehabil Eng; 2000 Dec; 8(4):490-8. PubMed ID: 11204040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor-Imagery EEG-Based BCIs in Wheelchair Movement and Control: A Systematic Literature Review.
    Palumbo A; Gramigna V; Calabrese B; Ielpo N
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair.
    Long J; Li Y; Wang H; Yu T; Pan J; Li F
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):720-9. PubMed ID: 22692936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design considerations for a personalized wheelchair navigation system.
    Ding D; Parmanto B; Karimi HA; Roongpiboonsopit D; Pramana G; Conahan T; Kasemsuppakorn P
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4790-3. PubMed ID: 18003077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time performance of a hands-free semi-autonomous wheelchair system using a combination of stereoscopic and spherical vision.
    Nguyen JS; Nguyen TN; Tran Y; Su SW; Craig A; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3069-72. PubMed ID: 23366573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards BCI-actuated smart wheelchair system.
    Tang J; Liu Y; Hu D; Zhou Z
    Biomed Eng Online; 2018 Aug; 17(1):111. PubMed ID: 30126416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A brain controlled wheelchair to navigate in familiar environments.
    Rebsamen B; Guan C; Zhang H; Wang C; Teo C; Ang MH; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2010 Dec; 18(6):590-8. PubMed ID: 20460212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a Data Logger for Capturing Human-Machine Interaction in Wheelchair Head-Foot Steering Sensor System in Dyskinetic Cerebral Palsy.
    Gakopoulos S; Nica IG; Bekteshi S; Aerts JM; Monbaliu E; Hallez H
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Paced Operation of a Wheelchair Based on a Hybrid Brain-Computer Interface Combining Motor Imagery and P300 Potential.
    Yu Y; Zhou Z; Liu Y; Jiang J; Yin E; Zhang N; Wang Z; Liu Y; Wu X; Hu D
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2516-2526. PubMed ID: 29220327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating gaze-driven power wheelchair with navigation support for persons with disabilities.
    Wästlund E; Sponseller K; Pettersson O; Bared A
    J Rehabil Res Dev; 2015; 52(7):815-26. PubMed ID: 26744901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid brain computer interface system based on the neurophysiological protocol and brain-actuated switch for wheelchair control.
    Cao L; Li J; Ji H; Jiang C
    J Neurosci Methods; 2014 May; 229():33-43. PubMed ID: 24713576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.