These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 27739499)

  • 21. On the development of a confocal Rayleigh-Brillouin microscope.
    Liptak DC; Reber JC; Maguire JF; Amer MS
    Rev Sci Instrum; 2007 Jan; 78(1):016106. PubMed ID: 17503955
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stimulated Brillouin Scattering Microscopic Imaging.
    Ballmann CW; Thompson JV; Traverso AJ; Meng Z; Scully MO; Yakovlev VV
    Sci Rep; 2015 Dec; 5():18139. PubMed ID: 26691398
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Non-contact and label-free biomechanical imaging: Stimulated Brillouin microscopy and beyond.
    Shi C; Zhang H; Zhang J
    Front Phys; 2023; 11():. PubMed ID: 37377499
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Parallel imaging with phonon microscopy using a multi-core fibre bundle detection.
    Fuentes-Domínguez R; Yao M; Hardiman W; La Cavera Iii S; Setchfield K; Pérez-Cota F; Smith RJ; Clark M
    Photoacoustics; 2023 Jun; 31():100493. PubMed ID: 37180958
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shear Brillouin light scattering microscope.
    Kim M; Besner S; Ramier A; Kwok SJ; An J; Scarcelli G; Yun SH
    Opt Express; 2016 Jan; 24(1):319-28. PubMed ID: 26832263
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dark-field Brillouin microscopy.
    Antonacci G
    Opt Lett; 2017 Apr; 42(7):1432-1435. PubMed ID: 28362786
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomechanics of subcellular structures by non-invasive Brillouin microscopy.
    Antonacci G; Braakman S
    Sci Rep; 2016 Nov; 6():37217. PubMed ID: 27845411
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Brillouin microscopy monitors rapid responses in subcellular compartments.
    Coker ZN; Troyanova-Wood M; Steelman ZA; Ibey BL; Bixler JN; Scully MO; Yakovlev VV
    Photonix; 2024; 5(1):9. PubMed ID: 38618142
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical Characterization of 3D Ovarian Cancer Nodules Using Brillouin Confocal Microscopy.
    Conrad C; Gray KM; Stroka KM; Rizvi I; Scarcelli G
    Cell Mol Bioeng; 2019 Jun; 12(3):215-226. PubMed ID: 31719911
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two-dimensional fluorescence-detected coherent spectroscopy with absolute phasing by confocal imaging of a dynamic grating and 27-step phase-cycling.
    De AK; Monahan D; Dawlaty JM; Fleming GR
    J Chem Phys; 2014 May; 140(19):194201. PubMed ID: 24852531
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Brillouin spectroscopy via an atomic line monochromator.
    Hutchins R; Schumacher J; Frank E; Ambekar YS; Zanini G; Scarcelli G
    Opt Express; 2024 May; 32(11):18572-18581. PubMed ID: 38859010
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media.
    Fiore A; Zhang J; Shao P; Yun SH; Scarcelli G
    Appl Phys Lett; 2016 May; 108(20):203701. PubMed ID: 27274097
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Background-free Brillouin spectroscopy in scattering media at 780  nm via stimulated Brillouin scattering.
    Remer I; Bilenca A
    Opt Lett; 2016 Mar; 41(5):926-9. PubMed ID: 26974082
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transition across a sharp interface: Data from Raman and Brillouin imaging spectroscopy.
    Caponi S; Fioretto D; Mattarelli M
    Data Brief; 2020 Dec; 33():106368. PubMed ID: 33088877
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Precise Determination of Brillouin Scattering Spectrum Using a Virtually Imaged Phase Array (VIPA) Spectrometer and Charge-Coupled Device (CCD) Camera.
    Meng Z; Yakovlev VV
    Appl Spectrosc; 2016 Aug; 70(8):1356-63. PubMed ID: 27296309
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Image analysis applied to Brillouin images of tissue-mimicking collagen gelatins.
    Correa N; Harding S; Bailey M; Brasselet S; Palombo F
    Biomed Opt Express; 2019 Mar; 10(3):1329-1338. PubMed ID: 30891349
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Size and environment: The effect of phonon localization on micro-Brillouin imaging.
    Passeri AA; Di Michele A; Neri I; Cottone F; Fioretto D; Mattarelli M; Caponi S
    Biomater Adv; 2023 Apr; 147():213341. PubMed ID: 36827851
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of microbial biofilm structure by laser scanning microscopy.
    Neu TR; Lawrence JR
    Adv Biochem Eng Biotechnol; 2014; 146():1-51. PubMed ID: 24840778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-invasive imaging of skin physiology and percutaneous penetration using fluorescence spectral and lifetime imaging with multiphoton and confocal microscopy.
    Roberts MS; Dancik Y; Prow TW; Thorling CA; Lin LL; Grice JE; Robertson TA; König K; Becker W
    Eur J Pharm Biopharm; 2011 Apr; 77(3):469-88. PubMed ID: 21256962
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two-photon excited hemoglobin fluorescence provides contrast mechanism for label-free imaging of microvasculature in vivo.
    Li D; Zheng W; Zeng Y; Luo Y; Qu JY
    Opt Lett; 2011 Mar; 36(6):834-6. PubMed ID: 21403700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.