BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 27739525)

  • 1. CRISPR/Cas9 mediated knockout of rb1 and rbl1 leads to rapid and penetrant retinoblastoma development in Xenopus tropicalis.
    Naert T; Colpaert R; Van Nieuwenhuysen T; Dimitrakopoulou D; Leoen J; Haustraete J; Boel A; Steyaert W; Lepez T; Deforce D; Willaert A; Creytens D; Vleminckx K
    Sci Rep; 2016 Oct; 6():35264. PubMed ID: 27739525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9-Mediated Knockout of Rb1 in Xenopus tropicalis.
    Naert T; Vleminckx K
    Methods Mol Biol; 2018; 1726():177-193. PubMed ID: 29468553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RBL1 (p107) functions as tumor suppressor in glioblastoma and small-cell pancreatic neuroendocrine carcinoma in Xenopus tropicalis.
    Naert T; Dimitrakopoulou D; Tulkens D; Demuynck S; Carron M; Noelanders R; Eeckhout L; Van Isterdael G; Deforce D; Vanhove C; Van Dorpe J; Creytens D; Vleminckx K
    Oncogene; 2020 Mar; 39(13):2692-2706. PubMed ID: 32001819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TALENs and CRISPR/Cas9 fuel genetically engineered clinically relevant Xenopus tropicalis tumor models.
    Naert T; Van Nieuwenhuysen T; Vleminckx K
    Genesis; 2017 Jan; 55(1-2):. PubMed ID: 28095622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Simple Protocol for Loss-of-Function Analysis in Xenopus tropicalis Founders Using the CRISPR-Cas System.
    Sakane Y; Suzuki KT; Yamamoto T
    Methods Mol Biol; 2017; 1630():189-203. PubMed ID: 28643260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid and efficient analysis of gene function using CRISPR-Cas9 in Xenopus tropicalis founders.
    Shigeta M; Sakane Y; Iida M; Suzuki M; Kashiwagi K; Kashiwagi A; Fujii S; Yamamoto T; Suzuki KT
    Genes Cells; 2016 Jul; 21(7):755-71. PubMed ID: 27219625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling Developmental and Tumorigenic Aspects of Trilateral Retinoblastoma via Human Embryonic Stem Cells.
    Avior Y; Lezmi E; Yanuka D; Benvenisty N
    Stem Cell Reports; 2017 May; 8(5):1354-1365. PubMed ID: 28392220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cancer Models in Xenopus tropicalis by CRISPR/Cas9 Mediated Knockout of Tumor Suppressors.
    Naert T; Vleminckx K
    Methods Mol Biol; 2018; 1865():147-161. PubMed ID: 30151765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of two H1 hESC sublines carrying deletions of RB1 exon 1/promoter in heterozygous or compound heterozygous state.
    Menges J; Cremanns M; Steenpass L
    Stem Cell Res; 2019 Aug; 39():101517. PubMed ID: 31404748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RB1 in cancer: different mechanisms of RB1 inactivation and alterations of pRb pathway in tumorigenesis.
    Di Fiore R; D'Anneo A; Tesoriere G; Vento R
    J Cell Physiol; 2013 Aug; 228(8):1676-87. PubMed ID: 23359405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heritable CRISPR/Cas9-mediated targeted integration in Xenopus tropicalis.
    Shi Z; Wang F; Cui Y; Liu Z; Guo X; Zhang Y; Deng Y; Zhao H; Chen Y
    FASEB J; 2015 Dec; 29(12):4914-23. PubMed ID: 26268927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in therapeutic CRISPR/Cas9 genome editing.
    Savić N; Schwank G
    Transl Res; 2016 Feb; 168():15-21. PubMed ID: 26470680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods for CRISPR/Cas9 Xenopus tropicalis Tissue-Specific Multiplex Genome Engineering.
    Naert T; Vleminckx K
    Methods Mol Biol; 2018; 1865():33-54. PubMed ID: 30151757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling Breast Cancer Using CRISPR-Cas9-Mediated Engineering of Human Breast Organoids.
    Dekkers JF; Whittle JR; Vaillant F; Chen HR; Dawson C; Liu K; Geurts MH; Herold MJ; Clevers H; Lindeman GJ; Visvader JE
    J Natl Cancer Inst; 2020 May; 112(5):540-544. PubMed ID: 31589320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Medulloblastoma and retinoblastoma: oncology recapitulates ontogeny.
    Romer JT; Curran T
    Cell Cycle; 2004 Jul; 3(7):917-9. PubMed ID: 15254429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation and characterization of three CRISPR/Cas9 edited RB1 null hiPSC lines for retinoblastoma disease modelling.
    Agrawal T; Maddileti S; Mariappan I
    Stem Cell Res; 2024 Apr; 76():103373. PubMed ID: 38452707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-efficiency non-mosaic CRISPR-mediated knock-in and indel mutation in F0
    Aslan Y; Tadjuidje E; Zorn AM; Cha SW
    Development; 2017 Aug; 144(15):2852-2858. PubMed ID: 28694259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis.
    Nakayama T; Fish MB; Fisher M; Oomen-Hajagos J; Thomsen GH; Grainger RM
    Genesis; 2013 Dec; 51(12):835-43. PubMed ID: 24123613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genotyping of CRISPR/Cas9 Genome Edited Xenopus tropicalis.
    Naert T; Vleminckx K
    Methods Mol Biol; 2018; 1865():67-82. PubMed ID: 30151759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas-mediated knock-in via non-homologous end-joining in the crustacean Daphnia magna.
    Kumagai H; Nakanishi T; Matsuura T; Kato Y; Watanabe H
    PLoS One; 2017; 12(10):e0186112. PubMed ID: 29045453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.