These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 27739653)

  • 1. Hole-Transport Materials for Perovskite Solar Cells.
    Calió L; Kazim S; Grätzel M; Ahmad S
    Angew Chem Int Ed Engl; 2016 Nov; 55(47):14522-14545. PubMed ID: 27739653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kesterite Cu2ZnSnS4 as a Low-Cost Inorganic Hole-Transporting Material for High-Efficiency Perovskite Solar Cells.
    Wu Q; Xue C; Li Y; Zhou P; Liu W; Zhu J; Dai S; Zhu C; Yang S
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28466-73. PubMed ID: 26646015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational Strategies for Efficient Perovskite Solar Cells.
    Seo J; Noh JH; Seok SI
    Acc Chem Res; 2016 Mar; 49(3):562-72. PubMed ID: 26950188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging of Inorganic Hole Transporting Materials For Perovskite Solar Cells.
    Rajeswari R; Mrinalini M; Prasanthkumar S; Giribabu L
    Chem Rec; 2017 Jul; 17(7):681-699. PubMed ID: 28052541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells.
    Aharon S; Gamliel S; El Cohen B; Etgar L
    Phys Chem Chem Phys; 2014 Jun; 16(22):10512-8. PubMed ID: 24736900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophobic Organic Hole Transporters for Improved Moisture Resistance in Metal Halide Perovskite Solar Cells.
    Leijtens T; Giovenzana T; Habisreutinger SN; Tinkham JS; Noel NK; Kamino BA; Sadoughi G; Sellinger A; Snaith HJ
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):5981-9. PubMed ID: 26859777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling materials and processes in hybrid/organic photovoltaics: from dye-sensitized to perovskite solar cells.
    De Angelis F
    Acc Chem Res; 2014 Nov; 47(11):3349-60. PubMed ID: 24856085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dipole-field-assisted charge extraction in metal-perovskite-metal back-contact solar cells.
    Lin X; Jumabekov AN; Lal NN; Pascoe AR; Gómez DE; Duffy NW; Chesman ASR; Sears K; Fournier M; Zhang Y; Bao Q; Cheng YB; Spiccia L; Bach U
    Nat Commun; 2017 Sep; 8(1):613. PubMed ID: 28931833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perovskite as light harvester: a game changer in photovoltaics.
    Kazim S; Nazeeruddin MK; Grätzel M; Ahmad S
    Angew Chem Int Ed Engl; 2014 Mar; 53(11):2812-24. PubMed ID: 24519832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Interfacial Layers in Perovskite Solar Cells.
    Cho AN; Park NG
    ChemSusChem; 2017 Oct; 10(19):3687-3704. PubMed ID: 28736950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies.
    Johnston MB; Herz LM
    Acc Chem Res; 2016 Jan; 49(1):146-54. PubMed ID: 26653572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hole Transport Materials for Tin-Based Perovskite Solar Cells: Properties, Progress, Prospects.
    Chen X; Cheng J; He L; Zhao L; Zhang C; Pang A; Li J
    Molecules; 2023 Apr; 28(9):. PubMed ID: 37175196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of mixed-organic-cation for high performance hole-conductor-free perovskite solar cells.
    Xiao M; Zhao L; Wei S; Li Y; Dong B; Xu Z; Wan L; Wang S
    J Colloid Interface Sci; 2018 Jan; 510():118-126. PubMed ID: 28942066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategy to Boost the Efficiency of Mixed-Ion Perovskite Solar Cells: Changing Geometry of the Hole Transporting Material.
    Zhang J; Xu B; Johansson MB; Vlachopoulos N; Boschloo G; Sun L; Johansson EM; Hagfeldt A
    ACS Nano; 2016 Jul; 10(7):6816-25. PubMed ID: 27304078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amorphous Hole-Transporting Material based on 2,2'-Bis-substituted 1,1'-Biphenyl Scaffold for Application in Perovskite Solar Cells.
    Magomedov A; Sakai N; Kamarauskas E; Jokubauskaitė G; Franckevičius M; Jankauskas V; Snaith HJ; Getautis V
    Chem Asian J; 2017 May; 12(9):958-962. PubMed ID: 28299910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review on Recent Progress of All-Inorganic Metal Halide Perovskites and Solar Cells.
    Xiang W; Tress W
    Adv Mater; 2019 Nov; 31(44):e1902851. PubMed ID: 31478275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient and Stable Perovskite Solar Cells Based on Inorganic Hole Transport Materials.
    Park HH
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35010061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of Dopant-Free Donor-Acceptor-type Hole Transporting Material for Highly Efficient and Stable Perovskite Solar Cells.
    Heo JH; Park S; Im SH; Son HJ
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39511-39518. PubMed ID: 29064230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Physical Deposition Approach for Low Cost Inorganic Hole Transport Layer in Normal Architecture of Durable Perovskite Solar Cells.
    Nejand BA; Ahmadi V; Shahverdi HR
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):21807-18. PubMed ID: 26402149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Solution-Processed Transparent NiO Hole-Extraction Layer for High-Performance Inverted Perovskite Solar Cells.
    Tang LJ; Chen X; Wen TY; Yang S; Zhao JJ; Qiao HW; Hou Y; Yang HG
    Chemistry; 2018 Feb; 24(12):2845-2849. PubMed ID: 29314319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.