These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 27739683)

  • 1. Sharp-Tip Silver Nanowires Mounted on Cantilevers for High-Aspect-Ratio High-Resolution Imaging.
    Ma X; Zhu Y; Kim S; Liu Q; Byrley P; Wei Y; Zhang J; Jiang K; Fan S; Yan R; Liu M
    Nano Lett; 2016 Nov; 16(11):6896-6902. PubMed ID: 27739683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-Demand 3D Printing of Nanowire Probes for High-Aspect-Ratio Atomic Force Microscopy Imaging.
    Lee H; Gan Z; Chen M; Min S; Yang J; Xu Z; Shao X; Lin Y; Li WD; Kim JT
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46571-46577. PubMed ID: 32924414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large Range Atomic Force Microscopy with High Aspect Ratio Micropipette Probe for Deep Trench Imaging.
    Shi H; Wang K; Tang S; Zhai S; Shi J; Su C; Liu L
    Small Methods; 2023 Jul; 7(7):e2300235. PubMed ID: 37075765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diamond-modified AFM probes: from diamond nanowires to atomic force microscopy-integrated boron-doped diamond electrodes.
    Smirnov W; Kriele A; Hoffmann R; Sillero E; Hees J; Williams OA; Yang N; Kranz C; Nebel CE
    Anal Chem; 2011 Jun; 83(12):4936-41. PubMed ID: 21534601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Focused ion beam-assisted fabrication of soft high-aspect ratio silicon nanowire atomic force microscopy probes.
    Knittel P; Hibst N; Mizaikoff B; Strehle S; Kranz C
    Ultramicroscopy; 2017 Aug; 179():24-32. PubMed ID: 28384541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sharp high-aspect-ratio AFM tips fabricated by a combination of deep reactive ion etching and focused ion beam techniques.
    Caballero D; Villanueva G; Plaza JA; Mills CA; Samitier J; Errachid A
    J Nanosci Nanotechnol; 2010 Jan; 10(1):497-501. PubMed ID: 20352882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GaN nanowire tips for nanoscale atomic force microscopy.
    Behzadirad M; Nami M; Rishinaramagalam AK; Feezell DF; Busani T
    Nanotechnology; 2017 May; 28(20):20LT01. PubMed ID: 28387216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of sharp silicon nitride tips into high-speed SU8 cantilevers in a batch fabrication process.
    Hosseini N; Neuenschwander M; Peric O; Andany SH; Adams JD; Fantner GE
    Beilstein J Nanotechnol; 2019; 10():2357-2363. PubMed ID: 31886112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silver nanowires for highly reproducible cantilever based AFM-TERS microscopy: towards a universal TERS probe.
    Walke P; Fujita Y; Peeters W; Toyouchi S; Frederickx W; De Feyter S; Uji-I H
    Nanoscale; 2018 Apr; 10(16):7556-7565. PubMed ID: 29637970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attachment of carbon nanotubes to atomic force microscope probes.
    Gibson CT; Carnally S; Roberts CJ
    Ultramicroscopy; 2007 Oct; 107(10-11):1118-22. PubMed ID: 17644251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All-metal AFM probes fabricated from microstructurally tailored Cu-Hf thin films.
    Luber EJ; Olsen BC; Ophus C; Radmilovic V; Mitlin D
    Nanotechnology; 2009 Aug; 20(34):345703. PubMed ID: 19652276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient fabrication of a high-aspect-ratio AFM tip by one-step exposure of a long focal depth holographic femtosecond axilens beam.
    Pan D; Liu S; Ji S; Cai Z; Li J; Hou Y; Zhang W; Fan S; Li R; Hu Y; Zhu W; Wu D; Chu J
    Opt Lett; 2020 Feb; 45(4):897-900. PubMed ID: 32058499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High throughput nanofabrication of silicon nanowire and carbon nanotube tips on AFM probes by stencil-deposited catalysts.
    Engstrom DS; Savu V; Zhu X; Bu IY; Milne WI; Brugger J; Boggild P
    Nano Lett; 2011 Apr; 11(4):1568-74. PubMed ID: 21446752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Application of Carbon Nanotube Atomic Force Microscopy Probes Using PeakForce Tapping Mode.
    Slattery AD; Shearer CJ; Shapter JG; Blanch AJ; Quinton JS; Gibson CT
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30304791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient attachment of carbon nanotubes to conventional and high-frequency AFM probes enhanced by electron beam processes.
    Slattery AD; Blanch AJ; Quinton JS; Gibson CT
    Nanotechnology; 2013 Jun; 24(23):235705. PubMed ID: 23669234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compact metal probes: a solution for atomic force microscopy based tip-enhanced Raman spectroscopy.
    Rodriguez RD; Sheremet E; Müller S; Gordan OD; Villabona A; Schulze S; Hietschold M; Zahn DR
    Rev Sci Instrum; 2012 Dec; 83(12):123708. PubMed ID: 23277997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving tapping mode atomic force microscopy with piezoelectric cantilevers.
    Rogers B; Manning L; Sulchek T; Adams JD
    Ultramicroscopy; 2004 Aug; 100(3-4):267-76. PubMed ID: 15231319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-high aspect ratio replaceable AFM tips using deformation-suppressed focused ion beam milling.
    Savenko A; Yildiz I; Petersen DH; Bøggild P; Bartenwerfer M; Krohs F; Oliva M; Harzendorf T
    Nanotechnology; 2013 Nov; 24(46):465701. PubMed ID: 24149369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Batch fabrication of atomic force microscopy probes with recessed integrated ring microelectrodes at a wafer level.
    Shin H; Hesketh PJ; Mizaikoff B; Kranz C
    Anal Chem; 2007 Jul; 79(13):4769-77. PubMed ID: 17521168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High aspect ratio AFM Probe processing by helium-ion-beam induced deposition.
    Onishi K; Guo H; Nagano S; Fujita D
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i30. PubMed ID: 25359832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.