BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 27739685)

  • 1. Hyperbranched Copolymers Based on Glycidol and Amino Glycidyl Ether: Highly Biocompatible Polyamines Sheathed in Polyglycerols.
    Song S; Lee J; Kweon S; Song J; Kim K; Kim BS
    Biomacromolecules; 2016 Nov; 17(11):3632-3639. PubMed ID: 27739685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, characterization, and biocompatibility of biodegradable hyperbranched polyglycerols from acid-cleavable ketal group functionalized initiators.
    Shenoi RA; Lai BF; Kizhakkedathu JN
    Biomacromolecules; 2012 Oct; 13(10):3018-30. PubMed ID: 22920950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maleimide Glycidyl Ether: A Bifunctional Monomer for Orthogonal Cationic and Radical Polymerizations.
    Klein R; Übel F; Frey H
    Macromol Rapid Commun; 2015 Oct; 36(20):1822-8. PubMed ID: 26301777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperbranched polyglycerols: from the controlled synthesis of biocompatible polyether polyols to multipurpose applications.
    Wilms D; Stiriba SE; Frey H
    Acc Chem Res; 2010 Jan; 43(1):129-41. PubMed ID: 19785402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thioether-Bearing Hyperbranched Polyether Polyols with Methionine-Like Side-Chains: A Versatile Platform for Orthogonal Functionalization.
    Seiwert J; Herzberger J; Leibig D; Frey H
    Macromol Rapid Commun; 2017 Jan; 38(1):. PubMed ID: 28045229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cationic Copolymerization of 3,3-Bis(hydroxymethyl)oxetane and Glycidol: Biocompatible Hyperbranched Polyether Polyols with High Content of Primary Hydroxyl Groups.
    Christ EM; Hobernik D; Bros M; Wagner M; Frey H
    Biomacromolecules; 2015 Oct; 16(10):3297-307. PubMed ID: 26355352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nb and Ta benzotriazole or benzoxazole phenoxide complexes as catalysts for the ring-opening polymerization of glycidol to synthesize hyperbranched polyglycerols.
    Pappuru S; Chakraborty D; Ramkumar V
    Dalton Trans; 2017 Dec; 46(47):16640-16654. PubMed ID: 29168518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-pot synthesis of linear-hyperbranched amphiphilic block copolymers based on polyglycerol derivatives and their micelles.
    Oikawa Y; Lee S; Kim DH; Kang DH; Kim BS; Saito K; Sasaki S; Oishi Y; Shibasaki Y
    Biomacromolecules; 2013 Jul; 14(7):2171-8. PubMed ID: 23701273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. (1-Adamantyl)methyl glycidyl ether: a versatile building block for living polymerization.
    Moers C; Wrazidlo R; Natalello A; Netz I; Mondeshki M; Frey H
    Macromol Rapid Commun; 2014 Jun; 35(11):1075-80. PubMed ID: 24677644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beyond poly(ethylene glycol): linear polyglycerol as a multifunctional polyether for biomedical and pharmaceutical applications.
    Thomas A; Müller SS; Frey H
    Biomacromolecules; 2014 Jun; 15(6):1935-54. PubMed ID: 24813747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Power of the Disulfide Bond: An Ideal Random Copolymerization of Biodegradable Redox-Responsive Hyperbranched Polyglycerols.
    Cherri M; Romero JF; Steiner L; Dimde M; Koeppe H; Paulus B; Mohammadifar E; Haag R
    Biomacromolecules; 2024 Jan; 25(1):119-133. PubMed ID: 38112688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Michael Addition Polymerization of Trifunctional Amine and Acrylic Monomer: A Versatile Platform for Development of Biomaterials.
    Cheng W; Wu D; Liu Y
    Biomacromolecules; 2016 Oct; 17(10):3115-3126. PubMed ID: 27599254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growing hyperbranched polyglycerols on magnetic nanoparticles to resist nonspecific adsorption of proteins.
    Wang S; Zhou Y; Yang S; Ding B
    Colloids Surf B Biointerfaces; 2008 Nov; 67(1):122-6. PubMed ID: 18805680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacteria-repulsive polyglycerol surfaces by grafting polymerization onto aminopropylated surfaces.
    Weber T; Gies Y; Terfort A
    Langmuir; 2012 Nov; 28(45):15916-21. PubMed ID: 23072589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible hemostatic properties of sulfabetaine/quaternary ammonium modified hyperbranched polyglycerol.
    Wen J; Weinhart M; Lai B; Kizhakkedathu J; Brooks DE
    Biomaterials; 2016 Apr; 86():42-55. PubMed ID: 26885776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unimolecular micelles based on hydrophobically derivatized hyperbranched polyglycerols: biodistribution studies.
    Kainthan RK; Brooks DE
    Bioconjug Chem; 2008 Nov; 19(11):2231-8. PubMed ID: 18847230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and synthesis of cationic drug carriers based on hyperbranched poly(amine-ester)s.
    Pang Y; Zhu Q; Liu J; Wu J; Wang R; Chen S; Zhu X; Yan D; Huang W; Zhu B
    Biomacromolecules; 2010 Mar; 11(3):575-82. PubMed ID: 20155931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyglycerol Hyperbranched Polyesters: Synthesis, Properties and Pharmaceutical and Biomedical Applications.
    Zamboulis A; Nakiou EA; Christodoulou E; Bikiaris DN; Kontonasaki E; Liverani L; Boccaccini AR
    Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31835372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable polyglycerols with randomly distributed ketal groups as multi-functional drug delivery systems.
    Shenoi RA; Lai BF; Imran ul-haq M; Brooks DE; Kizhakkedathu JN
    Biomaterials; 2013 Aug; 34(25):6068-81. PubMed ID: 23688604
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Pagnacco CA; Kravicz MH; Sica FS; Fontanini V; González de San Román E; Lund R; Re F; Barroso-Bujans F
    Biomacromolecules; 2024 Jun; 25(6):3583-3595. PubMed ID: 38703359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.