These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 27739685)
1. Hyperbranched Copolymers Based on Glycidol and Amino Glycidyl Ether: Highly Biocompatible Polyamines Sheathed in Polyglycerols. Song S; Lee J; Kweon S; Song J; Kim K; Kim BS Biomacromolecules; 2016 Nov; 17(11):3632-3639. PubMed ID: 27739685 [TBL] [Abstract][Full Text] [Related]
2. Synthesis, characterization, and biocompatibility of biodegradable hyperbranched polyglycerols from acid-cleavable ketal group functionalized initiators. Shenoi RA; Lai BF; Kizhakkedathu JN Biomacromolecules; 2012 Oct; 13(10):3018-30. PubMed ID: 22920950 [TBL] [Abstract][Full Text] [Related]
3. Maleimide Glycidyl Ether: A Bifunctional Monomer for Orthogonal Cationic and Radical Polymerizations. Klein R; Übel F; Frey H Macromol Rapid Commun; 2015 Oct; 36(20):1822-8. PubMed ID: 26301777 [TBL] [Abstract][Full Text] [Related]
4. Hyperbranched polyglycerols: from the controlled synthesis of biocompatible polyether polyols to multipurpose applications. Wilms D; Stiriba SE; Frey H Acc Chem Res; 2010 Jan; 43(1):129-41. PubMed ID: 19785402 [TBL] [Abstract][Full Text] [Related]
5. Thioether-Bearing Hyperbranched Polyether Polyols with Methionine-Like Side-Chains: A Versatile Platform for Orthogonal Functionalization. Seiwert J; Herzberger J; Leibig D; Frey H Macromol Rapid Commun; 2017 Jan; 38(1):. PubMed ID: 28045229 [TBL] [Abstract][Full Text] [Related]
6. Cationic Copolymerization of 3,3-Bis(hydroxymethyl)oxetane and Glycidol: Biocompatible Hyperbranched Polyether Polyols with High Content of Primary Hydroxyl Groups. Christ EM; Hobernik D; Bros M; Wagner M; Frey H Biomacromolecules; 2015 Oct; 16(10):3297-307. PubMed ID: 26355352 [TBL] [Abstract][Full Text] [Related]
7. Nb and Ta benzotriazole or benzoxazole phenoxide complexes as catalysts for the ring-opening polymerization of glycidol to synthesize hyperbranched polyglycerols. Pappuru S; Chakraborty D; Ramkumar V Dalton Trans; 2017 Dec; 46(47):16640-16654. PubMed ID: 29168518 [TBL] [Abstract][Full Text] [Related]
8. One-pot synthesis of linear-hyperbranched amphiphilic block copolymers based on polyglycerol derivatives and their micelles. Oikawa Y; Lee S; Kim DH; Kang DH; Kim BS; Saito K; Sasaki S; Oishi Y; Shibasaki Y Biomacromolecules; 2013 Jul; 14(7):2171-8. PubMed ID: 23701273 [TBL] [Abstract][Full Text] [Related]
9. (1-Adamantyl)methyl glycidyl ether: a versatile building block for living polymerization. Moers C; Wrazidlo R; Natalello A; Netz I; Mondeshki M; Frey H Macromol Rapid Commun; 2014 Jun; 35(11):1075-80. PubMed ID: 24677644 [TBL] [Abstract][Full Text] [Related]
10. Beyond poly(ethylene glycol): linear polyglycerol as a multifunctional polyether for biomedical and pharmaceutical applications. Thomas A; Müller SS; Frey H Biomacromolecules; 2014 Jun; 15(6):1935-54. PubMed ID: 24813747 [TBL] [Abstract][Full Text] [Related]
11. Power of the Disulfide Bond: An Ideal Random Copolymerization of Biodegradable Redox-Responsive Hyperbranched Polyglycerols. Cherri M; Romero JF; Steiner L; Dimde M; Koeppe H; Paulus B; Mohammadifar E; Haag R Biomacromolecules; 2024 Jan; 25(1):119-133. PubMed ID: 38112688 [TBL] [Abstract][Full Text] [Related]
12. Michael Addition Polymerization of Trifunctional Amine and Acrylic Monomer: A Versatile Platform for Development of Biomaterials. Cheng W; Wu D; Liu Y Biomacromolecules; 2016 Oct; 17(10):3115-3126. PubMed ID: 27599254 [TBL] [Abstract][Full Text] [Related]
13. Growing hyperbranched polyglycerols on magnetic nanoparticles to resist nonspecific adsorption of proteins. Wang S; Zhou Y; Yang S; Ding B Colloids Surf B Biointerfaces; 2008 Nov; 67(1):122-6. PubMed ID: 18805680 [TBL] [Abstract][Full Text] [Related]
15. Reversible hemostatic properties of sulfabetaine/quaternary ammonium modified hyperbranched polyglycerol. Wen J; Weinhart M; Lai B; Kizhakkedathu J; Brooks DE Biomaterials; 2016 Apr; 86():42-55. PubMed ID: 26885776 [TBL] [Abstract][Full Text] [Related]
16. Unimolecular micelles based on hydrophobically derivatized hyperbranched polyglycerols: biodistribution studies. Kainthan RK; Brooks DE Bioconjug Chem; 2008 Nov; 19(11):2231-8. PubMed ID: 18847230 [TBL] [Abstract][Full Text] [Related]
17. Design and synthesis of cationic drug carriers based on hyperbranched poly(amine-ester)s. Pang Y; Zhu Q; Liu J; Wu J; Wang R; Chen S; Zhu X; Yan D; Huang W; Zhu B Biomacromolecules; 2010 Mar; 11(3):575-82. PubMed ID: 20155931 [TBL] [Abstract][Full Text] [Related]
18. Polyglycerol Hyperbranched Polyesters: Synthesis, Properties and Pharmaceutical and Biomedical Applications. Zamboulis A; Nakiou EA; Christodoulou E; Bikiaris DN; Kontonasaki E; Liverani L; Boccaccini AR Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31835372 [TBL] [Abstract][Full Text] [Related]
19. Biodegradable polyglycerols with randomly distributed ketal groups as multi-functional drug delivery systems. Shenoi RA; Lai BF; Imran ul-haq M; Brooks DE; Kizhakkedathu JN Biomaterials; 2013 Aug; 34(25):6068-81. PubMed ID: 23688604 [TBL] [Abstract][Full Text] [Related]
20. Pagnacco CA; Kravicz MH; Sica FS; Fontanini V; González de San Román E; Lund R; Re F; Barroso-Bujans F Biomacromolecules; 2024 Jun; 25(6):3583-3595. PubMed ID: 38703359 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]