These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 27739705)
1. Optimization of noise-induced synchronization of oscillator networks. Kawamura Y; Nakao H Phys Rev E; 2016 Sep; 94(3-1):032201. PubMed ID: 27739705 [TBL] [Abstract][Full Text] [Related]
2. Noise-induced synchronization of oscillatory convection and its optimization. Kawamura Y; Nakao H Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012912. PubMed ID: 24580302 [TBL] [Abstract][Full Text] [Related]
3. Phase synchronization between collective rhythms of globally coupled oscillator groups: noisy identical case. Kawamura Y; Nakao H; Arai K; Kori H; Kuramoto Y Chaos; 2010 Dec; 20(4):043109. PubMed ID: 21198079 [TBL] [Abstract][Full Text] [Related]
4. Scaling and synchronization in a ring of diffusively coupled nonlinear oscillators. Senthilkumar DV; Muruganandam P; Lakshmanan M; Kurths J Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066219. PubMed ID: 20866513 [TBL] [Abstract][Full Text] [Related]
5. Anti-phase collective synchronization with intrinsic in-phase coupling of two groups of electrochemical oscillators. Sebek M; Kawamura Y; Nott AM; Kiss IZ Philos Trans A Math Phys Eng Sci; 2019 Dec; 377(2160):20190095. PubMed ID: 31656145 [TBL] [Abstract][Full Text] [Related]
6. Optimal phase response curves for stochastic synchronization of limit-cycle oscillators by common Poisson noise. Hata S; Arai K; Galán RF; Nakao H Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016229. PubMed ID: 21867295 [TBL] [Abstract][Full Text] [Related]
7. Collective-phase description of coupled oscillators with general network structure. Kori H; Kawamura Y; Nakao H; Arai K; Kuramoto Y Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036207. PubMed ID: 19905200 [TBL] [Abstract][Full Text] [Related]
8. Phase synchronization between collective rhythms of globally coupled oscillator groups: noiseless nonidentical case. Kawamura Y; Nakao H; Arai K; Kori H; Kuramoto Y Chaos; 2010 Dec; 20(4):043110. PubMed ID: 21198080 [TBL] [Abstract][Full Text] [Related]
9. Phase synchronization between collective rhythms of fully locked oscillator groups. Kawamura Y Sci Rep; 2014 Apr; 4():4832. PubMed ID: 24776525 [TBL] [Abstract][Full Text] [Related]
10. Stochastic synchronization of genetic oscillator networks. Li C; Chen L; Aihara K BMC Syst Biol; 2007 Jan; 1():6. PubMed ID: 17408513 [TBL] [Abstract][Full Text] [Related]
11. Interacting stochastic oscillators. Zhang J; Yuan Z; Wang J; Zhou T Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021101. PubMed ID: 18351981 [TBL] [Abstract][Full Text] [Related]
18. Collective phase response curves for heterogeneous coupled oscillators. Hannay KM; Booth V; Forger DB Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022923. PubMed ID: 26382491 [TBL] [Abstract][Full Text] [Related]
19. Mesoscopic model reduction for the collective dynamics of sparse coupled oscillator networks. Smith LD; Gottwald GA Chaos; 2021 Jul; 31(7):073116. PubMed ID: 34340344 [TBL] [Abstract][Full Text] [Related]
20. Relaxation of synchronization on complex networks. Son SW; Jeong H; Hong H Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016106. PubMed ID: 18764019 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]