These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 27739722)
1. Anomalous transport in cellular flows: The role of initial conditions and aging. Pöschke P; Sokolov IM; Nepomnyashchy AA; Zaks MA Phys Rev E; 2016 Sep; 94(3-1):032128. PubMed ID: 27739722 [TBL] [Abstract][Full Text] [Related]
2. Transport on intermediate time scales in flows with cat's eye patterns. Pöschke P; Sokolov IM; Zaks MA; Nepomnyashchy AA Phys Rev E; 2017 Dec; 96(6-1):062128. PubMed ID: 29347401 [TBL] [Abstract][Full Text] [Related]
3. Subdiffusion of mixed origins: when ergodicity and nonergodicity coexist. Meroz Y; Sokolov IM; Klafter J Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):010101. PubMed ID: 20365308 [TBL] [Abstract][Full Text] [Related]
4. Noisy continuous time random walks. Jeon JH; Barkai E; Metzler R J Chem Phys; 2013 Sep; 139(12):121916. PubMed ID: 24089728 [TBL] [Abstract][Full Text] [Related]
5. A general phenomenological relation for the subdiffusive exponent of anomalous diffusion in disordered media. Alcázar-Cano N; Delgado-Buscalioni R Soft Matter; 2018 Dec; 14(48):9937-9949. PubMed ID: 30488923 [TBL] [Abstract][Full Text] [Related]
6. Anomalous transport of particle tracers in multidimensional cellular flows. Vargas WL; Palacio LE; Dominguez DM Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026314. PubMed ID: 12636807 [TBL] [Abstract][Full Text] [Related]
7. Dynamics of self-propelled tracer particles inside a polymer network. Kumar P; Chakrabarti R Phys Chem Chem Phys; 2023 Jan; 25(3):1937-1946. PubMed ID: 36541408 [TBL] [Abstract][Full Text] [Related]
8. Probing microscopic origins of confined subdiffusion by first-passage observables. Condamin S; Tejedor V; Voituriez R; Bénichou O; Klafter J Proc Natl Acad Sci U S A; 2008 Apr; 105(15):5675-80. PubMed ID: 18391208 [TBL] [Abstract][Full Text] [Related]
9. Spatial distributions at equilibrium under heterogeneous transient subdiffusion. Berry H; Soula HA Front Physiol; 2014; 5():437. PubMed ID: 25429273 [TBL] [Abstract][Full Text] [Related]
10. Anomalous diffusion due to hindering by mobile obstacles undergoing Brownian motion or Orstein-Ulhenbeck processes. Berry H; Chaté H Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022708. PubMed ID: 25353510 [TBL] [Abstract][Full Text] [Related]
11. Test for determining a subdiffusive model in ergodic systems from single trajectories. Meroz Y; Sokolov IM; Klafter J Phys Rev Lett; 2013 Mar; 110(9):090601. PubMed ID: 23496698 [TBL] [Abstract][Full Text] [Related]
12. Divergent series and memory of the initial condition in the long-time solution of some anomalous diffusion problems. Yuste SB; Borrego R; Abad E Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021105. PubMed ID: 20365528 [TBL] [Abstract][Full Text] [Related]
13. Geometry controlled anomalous diffusion in random fractal geometries: looking beyond the infinite cluster. Mardoukhi Y; Jeon JH; Metzler R Phys Chem Chem Phys; 2015 Nov; 17(44):30134-47. PubMed ID: 26503611 [TBL] [Abstract][Full Text] [Related]
14. MESOSCOPIC MODELING OF STOCHASTIC REACTION-DIFFUSION KINETICS IN THE SUBDIFFUSIVE REGIME. Blanc E; Engblom S; Hellander A; Lötstedt P Multiscale Model Simul; 2016; 14(2):668-707. PubMed ID: 29046618 [TBL] [Abstract][Full Text] [Related]
15. Mean-squared-displacement statistical test for fractional Brownian motion. Sikora G; Burnecki K; Wyłomańska A Phys Rev E; 2017 Mar; 95(3-1):032110. PubMed ID: 28415337 [TBL] [Abstract][Full Text] [Related]
16. Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Metzler R; Jeon JH; Cherstvy AG; Barkai E Phys Chem Chem Phys; 2014 Nov; 16(44):24128-64. PubMed ID: 25297814 [TBL] [Abstract][Full Text] [Related]
17. Aging underdamped scaled Brownian motion: Ensemble- and time-averaged particle displacements, nonergodicity, and the failure of the overdamping approximation. Safdari H; Cherstvy AG; Chechkin AV; Bodrova A; Metzler R Phys Rev E; 2017 Jan; 95(1-1):012120. PubMed ID: 28208482 [TBL] [Abstract][Full Text] [Related]
18. Scaled Brownian motion as a mean-field model for continuous-time random walks. Thiel F; Sokolov IM Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012115. PubMed ID: 24580180 [TBL] [Abstract][Full Text] [Related]
19. Dynamics of reaction-diffusion systems in a subdiffusive regime. Hernández D; Varea C; Barrio RA Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026109. PubMed ID: 19391808 [TBL] [Abstract][Full Text] [Related]
20. Non-universal tracer diffusion in crowded media of non-inert obstacles. Ghosh SK; Cherstvy AG; Metzler R Phys Chem Chem Phys; 2015 Jan; 17(3):1847-58. PubMed ID: 25474476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]