These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 27739726)

  • 1. Short-time height distribution in the one-dimensional Kardar-Parisi-Zhang equation: Starting from a parabola.
    Kamenev A; Meerson B; Sasorov PV
    Phys Rev E; 2016 Sep; 94(3-1):032108. PubMed ID: 27739726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large Deviations of Surface Height in the Kardar-Parisi-Zhang Equation.
    Meerson B; Katzav E; Vilenkin A
    Phys Rev Lett; 2016 Feb; 116(7):070601. PubMed ID: 26943523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamical phase transition in large-deviation statistics of the Kardar-Parisi-Zhang equation.
    Janas M; Kamenev A; Meerson B
    Phys Rev E; 2016 Sep; 94(3-1):032133. PubMed ID: 27739741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large fluctuations of a Kardar-Parisi-Zhang interface on a half line: The height statistics at a shifted point.
    Asida T; Livne E; Meerson B
    Phys Rev E; 2019 Apr; 99(4-1):042132. PubMed ID: 31108640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Landau theory of the short-time dynamical phase transitions of the Kardar-Parisi-Zhang interface.
    Smith NR; Kamenev A; Meerson B
    Phys Rev E; 2018 Apr; 97(4-1):042130. PubMed ID: 29758703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exact Short-Time Height Distribution in the One-Dimensional Kardar-Parisi-Zhang Equation and Edge Fermions at High Temperature.
    Le Doussal P; Majumdar SN; Rosso A; Schehr G
    Phys Rev Lett; 2016 Aug; 117(7):070403. PubMed ID: 27563940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exact short-time height distribution in the one-dimensional Kardar-Parisi-Zhang equation with Brownian initial condition.
    Krajenbrink A; Le Doussal P
    Phys Rev E; 2017 Aug; 96(2-1):020102. PubMed ID: 28950487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-dimensional Kardar-Parisi-Zhang equation: an exact solution and its universality.
    Sasamoto T; Spohn H
    Phys Rev Lett; 2010 Jun; 104(23):230602. PubMed ID: 20867222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exact short-time height distribution for the flat Kardar-Parisi-Zhang interface.
    Smith NR; Meerson B
    Phys Rev E; 2018 May; 97(5-1):052110. PubMed ID: 29906837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large deviations of the interface height in the Golubović-Bruinsma model of stochastic growth.
    Meerson B; Vilenkin A
    Phys Rev E; 2023 Jul; 108(1-1):014117. PubMed ID: 37583177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exact short-time height distribution and dynamical phase transition in the relaxation of a Kardar-Parisi-Zhang interface with random initial condition.
    Smith NR
    Phys Rev E; 2022 Oct; 106(4-1):044111. PubMed ID: 36397488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximum of an Airy process plus Brownian motion and memory in Kardar-Parisi-Zhang growth.
    Le Doussal P
    Phys Rev E; 2017 Dec; 96(6-1):060101. PubMed ID: 29347397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-time growth of a Kardar-Parisi-Zhang interface with flat initial conditions.
    Gueudré T; Le Doussal P; Rosso A; Henry A; Calabrese P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041151. PubMed ID: 23214573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local average height distribution of fluctuating interfaces.
    Smith NR; Meerson B; Sasorov PV
    Phys Rev E; 2017 Jan; 95(1-1):012134. PubMed ID: 28208441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-dimensional Kardar-Parisi-Zhang and Kuramoto-Sivashinsky universality class: Limit distributions.
    Roy D; Pandit R
    Phys Rev E; 2020 Mar; 101(3-1):030103. PubMed ID: 32289936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical theory for the Kardar-Parisi-Zhang equation in (1+1) dimensions.
    Masoudi AA; Shahbazi F; Davoudi J; Tabar MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026132. PubMed ID: 11863612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-KPZ fluctuations in the derivative of the Kardar-Parisi-Zhang equation or noisy Burgers equation.
    Rodríguez-Fernández E; Cuerno R
    Phys Rev E; 2020 May; 101(5-1):052126. PubMed ID: 32575191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Restoring the Fluctuation-Dissipation Theorem in Kardar-Parisi-Zhang Universality Class through a New Emergent Fractal Dimension.
    Gomes-Filho MS; de Castro P; Liarte DB; Oliveira FA
    Entropy (Basel); 2024 Mar; 26(3):. PubMed ID: 38539771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observing symmetry-broken optimal paths of the stationary Kardar-Parisi-Zhang interface via a large-deviation sampling of directed polymers in random media.
    Hartmann AK; Meerson B; Sasorov P
    Phys Rev E; 2021 Nov; 104(5-1):054125. PubMed ID: 34942795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exact solution for the Kardar-Parisi-Zhang equation with flat initial conditions.
    Calabrese P; Le Doussal P
    Phys Rev Lett; 2011 Jun; 106(25):250603. PubMed ID: 21770622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.