These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 27739735)

  • 21. Phase transition in fiber bundle models with recursive dynamics.
    Bhattacharyya P; Pradhan S; Chakrabarti BK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046122. PubMed ID: 12786451
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time evolution of damage due to environmentally assisted aging in a fiber bundle model.
    Lennartz-Sassinek S; Main IG; Danku Z; Kun F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032802. PubMed ID: 24125307
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A phenomenological molecular model for yielding and brittle-ductile transition of polymer glasses.
    Wang SQ; Cheng S; Lin P; Li X
    J Chem Phys; 2014 Sep; 141(9):094905. PubMed ID: 25194392
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Failure due to fatigue in fiber bundles and solids.
    Pradhan S; Chakrabarti BK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046124. PubMed ID: 12786453
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Brittle-quasibrittle transition in dynamic fracture: an energetic signature.
    Scheibert J; Guerra C; Célarié F; Dalmas D; Bonamy D
    Phys Rev Lett; 2010 Jan; 104(4):045501. PubMed ID: 20366720
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Critical ruptures in a bundle of slowly relaxing fibers.
    Kovács K; Nagy S; Hidalgo RC; Kun F; Herrmann HJ; Pagonabarraga I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036102. PubMed ID: 18517456
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanics-based statistics of failure risk of quasibrittle structures and size effect on safety factors.
    Bazant ZP; Pang SD
    Proc Natl Acad Sci U S A; 2006 Jun; 103(25):9434-9. PubMed ID: 16769888
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Absence of a tough-brittle transition in the statistical fracture of unidirectional composite tapes under local load sharing.
    Mahesh S; Phoenix SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026102. PubMed ID: 14995515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Strength distribution of planar local load-sharing bundles.
    Habeeb CN; Mahesh S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022125. PubMed ID: 26382362
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Creep rupture of fiber bundles: A molecular dynamics investigation.
    Linga G; Ballone P; Hansen A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022405. PubMed ID: 26382414
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design of quasibrittle materials and structures to optimize strength and scaling at probability tail: an apercu.
    Bažant ZP
    Proc Math Phys Eng Sci; 2019 Apr; 475(2224):20180617. PubMed ID: 31105447
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Time-dependent statistical failure of fiber networks.
    Mattsson A; Uesaka T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042158. PubMed ID: 26565219
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Scaling laws of creep rupture of fiber bundles.
    Kun F; Hidalgo RC; Herrmann HJ; Pál KF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 1):061802. PubMed ID: 16241249
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strength distribution of dental restorative ceramics: finite weakest link model with zero threshold.
    Le JL; Bazant ZP
    Dent Mater; 2009 May; 25(5):641-8. PubMed ID: 19147215
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Critical behavior of random fibers with mixed Weibull distribution.
    Divakaran U; Dutta A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011109. PubMed ID: 17358112
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Robustness of power systems under a democratic-fiber-bundle-like model.
    Yağan O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062811. PubMed ID: 26172758
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Creep rupture of materials: insights from a fiber bundle model with relaxation.
    Jagla EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046119. PubMed ID: 21599252
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scaling of strength and lifetime probability distributions of quasibrittle structures based on atomistic fracture mechanics.
    Bazant ZP; Le JL; Bazant MZ
    Proc Natl Acad Sci U S A; 2009 Jul; 106(28):11484-9. PubMed ID: 19561294
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stiffness transition in anisotropic fiber nets.
    Åström JA; Sunil Kumar PB; Karttunen M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021922. PubMed ID: 23005800
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stochastic mechanical degradation of multi-cracked fiber bundles with elastic and viscous interactions.
    Manca F; Giordano S; Palla PL; Cleri F
    Eur Phys J E Soft Matter; 2015 May; 38(5):131. PubMed ID: 25998172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.