These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 27739750)

  • 1. Controlling multiple filaments by relativistic optical vortex beams in plasmas.
    Ju LB; Huang TW; Xiao KD; Wu GZ; Yang SL; Li R; Yang YC; Long TY; Zhang H; Wu SZ; Qiao B; Ruan SC; Zhou CT
    Phys Rev E; 2016 Sep; 94(3-1):033202. PubMed ID: 27739750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitigating the relativistic laser beam filamentation via an elliptical beam profile.
    Huang TW; Zhou CT; Robinson AP; Qiao B; Zhang H; Wu SZ; Zhuo HB; Norreys PA; He XT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053106. PubMed ID: 26651801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unified Approach towards the Dynamics of Optical and Electron Vortex Beams.
    Bandyopadhyay P; Basu B; Chowdhury D
    Phys Rev Lett; 2016 Apr; 116(14):144801. PubMed ID: 27104712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integral momenta of vortex Bessel-Gaussian beams in turbulent atmosphere.
    Lukin IP
    Appl Opt; 2016 Apr; 55(12):B61-6. PubMed ID: 27140133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings.
    Zheng S; Wang J
    Sci Rep; 2017 Jan; 7():40781. PubMed ID: 28094325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intense attosecond pulses carrying orbital angular momentum using laser plasma interactions.
    Wang JW; Zepf M; Rykovanov SG
    Nat Commun; 2019 Dec; 10(1):5554. PubMed ID: 31804472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Propagation of orbital angular momentum modes carried by hollow vortex Gaussian beams in anisotropic atmospheric turbulence.
    Hu Z; Liu H; Xia J; He A; Du Z; Li Y; Li Z; Chen T; Li H; Lü Y
    J Opt Soc Am A Opt Image Sci Vis; 2020 Sep; 37(9):1404-1410. PubMed ID: 32902427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vortex laser beam generation from laser interaction with azimuthal plasma phase slab at relativistic intensities.
    Long T; Zhou C; Wu S; Ju L; Jiang K; Bai R; Huang T; Zhang H; Yu M; Ruan S; He X
    Phys Rev E; 2021 Feb; 103(2-1):023204. PubMed ID: 33735965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Propagation of an optical vortex carried by a partially coherent Laguerre-Gaussian beam in turbulent ocean.
    Cheng M; Guo L; Li J; Huang Q; Cheng Q; Zhang D
    Appl Opt; 2016 Jun; 55(17):4642-8. PubMed ID: 27409021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orbital angular momentum of superposition of identical shifted vortex beams.
    Kovalev AA; Kotlyar VV
    J Opt Soc Am A Opt Image Sci Vis; 2015 Oct; 32(10):1805-10. PubMed ID: 26479934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical vortex beams with a symmetric and almost symmetric OAM spectrum.
    Kotlyar VV; Kovalev AA
    J Opt Soc Am A Opt Image Sci Vis; 2021 Sep; 38(9):1276-1283. PubMed ID: 34613134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orbital angular momentum and paraxial propagation characteristics of non-coaxial Laguerre-Gaussian beams.
    Huang C; Zheng Y; Li H
    J Opt Soc Am A Opt Image Sci Vis; 2016 Nov; 33(11):2137-2143. PubMed ID: 27857438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Random wandering of laser beams with orbital angular momentum during propagation through atmospheric turbulence.
    Aksenov VP; Kolosov VV; Pogutsa CE
    Appl Opt; 2014 Jun; 53(17):3607-14. PubMed ID: 24921122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relativistic near-single-cycle optical vortex pulses from noble gas-filled multipass cells.
    Cao H; Nagymihaly RS; Kalashnikov M
    Opt Lett; 2020 Jun; 45(12):3240-3243. PubMed ID: 32538952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intense vortical-field generation using coherent superposition of multiple vortex beams.
    Guo X; Zhang X; Xu D; Chen W; Guo Y; Lan K; Shen B
    Sci Rep; 2023 Jan; 13(1):1104. PubMed ID: 36670173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Terahertz circular Airy vortex beams.
    Liu C; Liu J; Niu L; Wei X; Wang K; Yang Z
    Sci Rep; 2017 Jun; 7(1):3891. PubMed ID: 28634341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vortex Hermite-Gaussian laser beams.
    Kotlyar VV; Kovalev AA; Porfirev AP
    Opt Lett; 2015 Mar; 40(5):701-4. PubMed ID: 25723411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical evidence of the orbital angular momentum to energy ratio of vortex beams.
    Demore CE; Yang Z; Volovick A; Cochran S; MacDonald MP; Spalding GC
    Phys Rev Lett; 2012 May; 108(19):194301. PubMed ID: 23003045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breakup of ring beams carrying orbital angular momentum in sodium vapor.
    Bigelow MS; Zerom P; Boyd RW
    Phys Rev Lett; 2004 Feb; 92(8):083902. PubMed ID: 14995774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propagation dynamics and crosstalk of orbital angular momentum beams influenced by a supersonic wind-induced environmental disturbance.
    Huang X; Jiang T; Tan W; Nan S; Bai Y; Fu X
    Opt Express; 2022 Sep; 30(20):35624-35635. PubMed ID: 36258509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.