These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Derivation of matrix product states for the Heisenberg spin chain with open boundary conditions. Mei Z; Bolech CJ Phys Rev E; 2017 Mar; 95(3-1):032127. PubMed ID: 28415216 [TBL] [Abstract][Full Text] [Related]
3. Class of integrable diffusion-reaction processes. Alimohammadi M; Ahmadi N Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):1674-82. PubMed ID: 11088628 [TBL] [Abstract][Full Text] [Related]
4. Integrability of one-dimensional Lindbladians from operator-space fragmentation. Essler FHL; Piroli L Phys Rev E; 2020 Dec; 102(6-1):062210. PubMed ID: 33466089 [TBL] [Abstract][Full Text] [Related]
5. Mapping nonequilibrium onto equilibrium: the macroscopic fluctuations of simple transport models. Tailleur J; Kurchan J; Lecomte V Phys Rev Lett; 2007 Oct; 99(15):150602. PubMed ID: 17995150 [TBL] [Abstract][Full Text] [Related]
6. Nonequilibrium dynamics of random field Ising spin chains: exact results via real space renormalization group. Fisher DS; Le Doussal P; Monthus C Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066107. PubMed ID: 11736236 [TBL] [Abstract][Full Text] [Related]
7. Emergence of jams in the generalized totally asymmetric simple exclusion process. Derbyshev AE; Povolotsky AM; Priezzhev VB Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022125. PubMed ID: 25768476 [TBL] [Abstract][Full Text] [Related]
8. Exact time-dependent correlation functions for the symmetric exclusion process with open boundary. Santos JE; Schütz GM Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036107. PubMed ID: 11580394 [TBL] [Abstract][Full Text] [Related]
9. Large Deviations of a Tracer in the Symmetric Exclusion Process. Imamura T; Mallick K; Sasamoto T Phys Rev Lett; 2017 Apr; 118(16):160601. PubMed ID: 28474952 [TBL] [Abstract][Full Text] [Related]
10. Solution of the Lindblad equation for spin helix states. Popkov V; Schütz GM Phys Rev E; 2017 Apr; 95(4-1):042128. PubMed ID: 28505738 [TBL] [Abstract][Full Text] [Related]
11. Open Quantum Symmetric Simple Exclusion Process. Bernard D; Jin T Phys Rev Lett; 2019 Aug; 123(8):080601. PubMed ID: 31491217 [TBL] [Abstract][Full Text] [Related]
12. New Classical Integrable Systems from Generalized TT[over ¯]-Deformations. Doyon B; Hübner F; Yoshimura T Phys Rev Lett; 2024 Jun; 132(25):251602. PubMed ID: 38996253 [TBL] [Abstract][Full Text] [Related]
13. Totally asymmetric simple exclusion process with Langmuir kinetics. Parmeggiani A; Franosch T; Frey E Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046101. PubMed ID: 15600454 [TBL] [Abstract][Full Text] [Related]
14. Shock formation in an exclusion process with creation and annihilation. Evans MR; Juhász R; Santen L Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026117. PubMed ID: 14525059 [TBL] [Abstract][Full Text] [Related]
15. Velocity correlations of a discrete-time totally asymmetric simple-exclusion process in stationary state on a circle. Yamada Y; Katori M Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041141. PubMed ID: 22181121 [TBL] [Abstract][Full Text] [Related]
16. Kinetics of phase transformation on a Bethe lattice. Berim GO; Ruckenstein E J Chem Phys; 2004 Jan; 120(1):272-81. PubMed ID: 15267287 [TBL] [Abstract][Full Text] [Related]
17. Integrable Trotterization: Local Conservation Laws and Boundary Driving. Vanicat M; Zadnik L; Prosen T Phys Rev Lett; 2018 Jul; 121(3):030606. PubMed ID: 30085792 [TBL] [Abstract][Full Text] [Related]
18. Weakly nonequilibrium properties of a symmetric inclusion process with open boundaries. Vafayi K; Duong MH Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052143. PubMed ID: 25493775 [TBL] [Abstract][Full Text] [Related]
19. Equations-of-motion approach to the spin- 1/2 Ising model on the Bethe lattice. Mancini F; Naddeo A Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061108. PubMed ID: 17280039 [TBL] [Abstract][Full Text] [Related]
20. Exact ground state and finite-size scaling in a supersymmetric lattice model. Beccaria M; De Angelis GF Phys Rev Lett; 2005 Mar; 94(10):100401. PubMed ID: 15783463 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]