These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 27739783)

  • 1. Nuclear-plus-interference-scattering effect on the energy deposition of multi-MeV protons in a dense Be plasma.
    Wang Z; Fu Z; He B; Hu Z; Zhang P
    Phys Rev E; 2016 Sep; 94(3-1):033205. PubMed ID: 27739783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic properties of the energy loss of multi-MeV charged particles traveling in two-component warm dense plasmas.
    Fu ZG; Wang Z; Li ML; Li DF; Kang W; Zhang P
    Phys Rev E; 2016 Dec; 94(6-1):063203. PubMed ID: 28085472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stopping power of hot dense deuterium-tritium plasmas mixed with impurities to charged particles.
    Fu ZG; Wang Z; Mo C; Li D; Li W; Lu Y; Kang W; He XT; Zhang P
    Phys Rev E; 2020 May; 101(5-1):053209. PubMed ID: 32575272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy deposition of multi-MeV protons in compressed targets of fast-ignition inertial confinement fusion.
    Mahdavi M; Koohrokhi T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016405. PubMed ID: 22400686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density-dependent Energy Loss of Protons in Pb and Be Targets and Percent Mass-Stopping Power from Bethe-Bloch Formula and Bichsel-Sternheimer Data Within 1-12 MeV Energy Range: A Comparative Study Based on Bland-Altman Analysis.
    Iqbal A; Ullah N; Ur Rahman A
    J Med Imaging Radiat Sci; 2019 Mar; 50(1):149-156. PubMed ID: 30777237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulation and analysis of proton energy-deposition patterns in the Bragg peak.
    González-Muñoz G; Tilly N; Fernández-Varea JM; Ahnesjö A
    Phys Med Biol; 2008 Jun; 53(11):2857-75. PubMed ID: 18460751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neutron spectra at 0 degrees from 83.7-MeV deuterons and 100.2-MeV protons on beryllium.
    Madey R; Waterman FM; Baldwin AR
    Med Phys; 1977; 4(4):322-3. PubMed ID: 882067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Validation of Low-Z Ion-Stopping Formalisms around the Bragg Peak in High-Energy-Density Plasmas.
    Frenje JA; Florido R; Mancini R; Nagayama T; Grabowski PE; Rinderknecht H; Sio H; Zylstra A; Gatu Johnson M; Li CK; Séguin FH; Petrasso RD; Glebov VY; Regan SP
    Phys Rev Lett; 2019 Jan; 122(1):015002. PubMed ID: 31012651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature equilibration in a fully ionized plasma: Electron-ion mass ratio effects.
    Brown LS; Singleton RL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066407. PubMed ID: 19658612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neutron spectra from 35 and 46 MeV protons, 16 and 28 MeV deuterons, and 44 MeV 3He ions on thick beryllium.
    Waterman FM; Kuchnir FT; Skaggs LS; Kouzes RT; Moore WH
    Med Phys; 1979; 6(5):432-5. PubMed ID: 492078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics investigation of the stopping power of warm dense hydrogen for electrons.
    Liu Y; Liu X; Zhang S; Liu H; Mo C; Fu Z; Dai J
    Phys Rev E; 2021 Jun; 103(6-1):063215. PubMed ID: 34271766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of neutron spectra generated from bombardment of 4 to 24 MeV protons on a thick ⁹Be target and estimation of neutron yields.
    Paul S; Sahoo GS; Tripathy SP; Sharma SC; Ramjilal ; Ninawe NG; Sunil C; Gupta AK; Bandyopadhyay T
    Rev Sci Instrum; 2014 Jun; 85(6):063501. PubMed ID: 24985813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective atomic numbers of composite materials for total and partial interaction processes for photons, electrons, and protons.
    Prasad SG; Parthasaradhi K; Bloomer WD
    Med Phys; 1997 Jun; 24(6):883-5. PubMed ID: 9198023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton-beryllium neutron production at 25-55 MeV.
    Johnsen SW
    Med Phys; 1977; 4(3):255-8. PubMed ID: 882061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the scattering power of radiotherapy protons.
    Gottschalk B
    Med Phys; 2010 Jan; 37(1):352-67. PubMed ID: 20175498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton stopping powers in some low-Z elements.
    Sharada KS
    Radiat Res; 1993 Dec; 136(3):335-40. PubMed ID: 8278574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dielectric response study of the electronic stopping power of liquid water for energetic protons and a new I-value for water.
    Emfietzoglou D; Garcia-Molina R; Kyriakou I; Abril I; Nikjoo H
    Phys Med Biol; 2009 Jun; 54(11):3451-72. PubMed ID: 19436107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of damping on proton energy loss in plasmas of all degeneracies.
    Barriga-Carrasco MD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016405. PubMed ID: 17677577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical characterization of neutron beams produced by protons and deuterons of various energies bombarding beryllium and lithium targets of several thicknesses.
    Amols HI; Dicello F; Awschalom M; Coulson L; Johnsen SW; Theus RB
    Med Phys; 1977; 4(6):486-93. PubMed ID: 412047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of plasma scale length on multi-MeV proton production by intense laser pulses.
    Mackinnon AJ; Borghesi M; Hatchett S; Key MH; Patel PK; Campbell H; Schiavi A; Snavely R; Wilks SC; Willi O
    Phys Rev Lett; 2001 Feb; 86(9):1769-72. PubMed ID: 11290244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.