BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 27739939)

  • 1. Intraoperative auditory steady-state monitoring during surgery in the cerebellopontine angle for estimation of postoperative hearing classes.
    Rampp S; Rensch L; Simmermacher S; Rahne T; Strauss C; Prell J
    J Neurosurg; 2017 Sep; 127(3):559-568. PubMed ID: 27739939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time intraoperative monitoring of brainstem auditory evoked potentials during microvascular decompression for hemifacial spasm.
    Joo BE; Park SK; Cho KR; Kong DS; Seo DW; Park K
    J Neurosurg; 2016 Nov; 125(5):1061-1067. PubMed ID: 26824371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viability of intraoperative auditory steady state responses during intracranial surgery.
    Rampp S; Rensch L; Simmermacher S; Rahne T; Strauss C; Prell J
    J Clin Neurophysiol; 2014 Aug; 31(4):344-51. PubMed ID: 25083846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Intraoperative monitoring of cochlear nerve function during cerebello-pontine angle surgery].
    Rampp S; Rahne T; Plontke SK; Strauss C; Prell J
    HNO; 2017 May; 65(5):413-418. PubMed ID: 27815592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Normal ipsilateral/contralateral asymmetries in infant multiple auditory steady-state responses to air- and bone-conduction stimuli.
    Small SA; Stapells DR
    Ear Hear; 2008 Apr; 29(2):185-98. PubMed ID: 18595185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evoked facial nerve EMG and brainstem auditory evoked potential monitoring in cerebellopontine angle tumor resection.
    Lin CM; Hsu JC; Wu RS; Wu KC; Yu CL; Wu HF; Tan PP
    Acta Anaesthesiol Sin; 1997 Sep; 35(3):141-7. PubMed ID: 9407677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictive values of maximum changes of brainstem auditory evoked potentials during microvascular decompression for hemifacial spasm.
    Zhang Y; Ren H; Jia G; Zhang L; Fan G; Bi Q; Yu Y
    Acta Neurochir (Wien); 2020 Nov; 162(11):2823-2832. PubMed ID: 32385638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparisons of auditory steady state response and behavioral air conduction and bone conduction thresholds for infants and adults with normal hearing.
    Casey KA; Small SA
    Ear Hear; 2014; 35(4):423-39. PubMed ID: 24569693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superiority of tympanic ball electrodes over mastoid needle electrodes for intraoperative monitoring of hearing function.
    Krieg SM; Kempf L; Droese D; Rosahl SK; Meyer B; Lehmberg J
    J Neurosurg; 2014 May; 120(5):1042-7. PubMed ID: 24559226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability of Auditory Steady State Responses Over Time.
    Van Eeckhoutte M; Luke R; Wouters J; Francart T
    Ear Hear; 2018; 39(2):260-268. PubMed ID: 28857787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Intraoperative monitoring of hearing function in the removal of cerebellopontine angle tumor: auditory brainstem response and cochlear nerve compound action potential].
    Yamakami I; Ushikubo O; Uchino Y; Kobayashi E; Saeki N; Yamaura A; Oka N
    No Shinkei Geka; 2002 Mar; 30(3):275-82. PubMed ID: 11905020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-invasive intraoperative monitoring of cochlear function by cochlear microphonics during cerebellopontine-angle surgery.
    Lourenço B; Madero B; Tringali S; Dubernard X; Khalil T; Chays A; Bazin A; Mom T; Avan P
    Eur Arch Otorhinolaryngol; 2018 Jan; 275(1):59-69. PubMed ID: 29080147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hearing preservation in vestibular schwannoma surgery via retrosigmoid transmeatal approach.
    Matsushima K; Kohno M; Nakajima N
    Acta Neurochir (Wien); 2019 Nov; 161(11):2265-2269. PubMed ID: 31392568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards an optimal paradigm for intraoperative auditory nerve monitoring with auditory steady state responses.
    Rampp S; Rensch L; Simmermacher S; Rahne T; Strauss C; Prell J
    J Clin Monit Comput; 2017 Feb; 31(1):123-134. PubMed ID: 26852030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous acquisition of 80 Hz ASSRs and ABRs from quasi ASSRs for threshold estimation.
    Lachowska M; Bohórquez J; Ozdamar O
    Ear Hear; 2012; 33(5):660-71. PubMed ID: 22568993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brainstem auditory evoked potential monitoring: when is change in wave V significant?
    James ML; Husain AM
    Neurology; 2005 Nov; 65(10):1551-5. PubMed ID: 16301480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple auditory steady-state response thresholds to bone-conduction stimuli in young infants with normal hearing.
    Small SA; Stapells DR
    Ear Hear; 2006 Jun; 27(3):219-28. PubMed ID: 16672791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase stability of auditory steady state responses in newborn infants.
    Choi JM; Purcell DW; John MS
    Ear Hear; 2011; 32(5):593-604. PubMed ID: 21422930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The estimation of behavioral audiograms, auditory brainstem response (ABR) thresholds and auditory steady-state response (ASSR) thresholds of young adults with normal hearing].
    Szymańska A; Gryczyński M; Pajor A
    Otolaryngol Pol; 2008; 62(6):735-9. PubMed ID: 19205522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reliability in Hearing Threshold Prediction in Normal-Hearing and Hearing-Impaired Participants Using Mixed Multiple ASSR.
    Israelsson KE; Bogo R; Berninger E
    J Am Acad Audiol; 2015 Mar; 26(3):299-310. PubMed ID: 25751697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.