These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 27740597)

  • 1. Lactate as a Signaling Molecule That Regulates Exercise-Induced Adaptations.
    Nalbandian M; Takeda M
    Biology (Basel); 2016 Oct; 5(4):. PubMed ID: 27740597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The potential mechanisms of lactate in mediating exercise-enhanced cognitive function: a dual role as an energy supply substrate and a signaling molecule.
    Xue X; Liu B; Hu J; Bian X; Lou S
    Nutr Metab (Lond); 2022 Jul; 19(1):52. PubMed ID: 35907984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The science of cycling: physiology and training - part 1.
    Faria EW; Parker DL; Faria IE
    Sports Med; 2005; 35(4):285-312. PubMed ID: 15831059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactate metabolism: a new paradigm for the third millennium.
    Gladden LB
    J Physiol; 2004 Jul; 558(Pt 1):5-30. PubMed ID: 15131240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The emerging era of lactate: A rising star in cellular signaling and its regulatory mechanisms.
    Wu D; Zhang K; Khan FA; Wu Q; Pandupuspitasari NS; Tang Y; Guan K; Sun F; Huang C
    J Cell Biochem; 2023 Aug; 124(8):1067-1081. PubMed ID: 37566665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lactate metabolism: historical context, prior misinterpretations, and current understanding.
    Ferguson BS; Rogatzki MJ; Goodwin ML; Kane DA; Rightmire Z; Gladden LB
    Eur J Appl Physiol; 2018 Apr; 118(4):691-728. PubMed ID: 29322250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring Exercise-Induced Muscle Fatigue and Adaptations: Making Sense of Popular or Emerging Indices and Biomarkers.
    Theofilidis G; Bogdanis GC; Koutedakis Y; Karatzaferi C
    Sports (Basel); 2018 Nov; 6(4):. PubMed ID: 30486243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of endurance training and PGC-1α overexpression on calculated lactate production volume during exercise based on blood lactate concentration.
    Takeda R; Nonaka Y; Kakinoki K; Miura S; Kano Y; Hoshino D
    Sci Rep; 2022 Jan; 12(1):1635. PubMed ID: 35102189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebral glycolysis: a century of persistent misunderstanding and misconception.
    Schurr A
    Front Neurosci; 2014; 8():360. PubMed ID: 25477776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactate as Potential Mediators for Exercise-Induced Positive Effects on Neuroplasticity and Cerebrovascular Plasticity.
    Huang Z; Zhang Y; Zhou R; Yang L; Pan H
    Front Physiol; 2021; 12():656455. PubMed ID: 34290615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox state and lactate accumulation in human skeletal muscle during dynamic exercise.
    Sahlin K; Katz A; Henriksson J
    Biochem J; 1987 Jul; 245(2):551-6. PubMed ID: 3663177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic regulation by lactate.
    Sola-Penna M
    IUBMB Life; 2008 Sep; 60(9):605-8. PubMed ID: 18506840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PGC-1α mediates a rapid, exercise-induced downregulation of glycogenolysis in rat skeletal muscle.
    Kim SH; Koh JH; Higashida K; Jung SR; Holloszy JO; Han DH
    J Physiol; 2015 Feb; 593(3):635-43. PubMed ID: 25416622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of brain lactate receptor GPR81 aggravates exercise-induced central fatigue.
    Li J; Xia Y; Xu H; Xiong R; Zhao Y; Li P; Yang T; Huang Q; Shan F
    Am J Physiol Regul Integr Comp Physiol; 2022 Nov; 323(5):R822-R831. PubMed ID: 36189986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of β-adrenergic signaling in PGC-1α-mediated adaptations in mouse skeletal muscle.
    Brandt N; Nielsen L; Thiellesen Buch B; Gudiksen A; Ringholm S; Hellsten Y; Bangsbo J; Pilegaard H
    Am J Physiol Endocrinol Metab; 2018 Jan; 314(1):E1-E20. PubMed ID: 28874356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain lactate metabolism: the discoveries and the controversies.
    Dienel GA
    J Cereb Blood Flow Metab; 2012 Jul; 32(7):1107-38. PubMed ID: 22186669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of lactate administration on mitochondrial enzyme activity and monocarboxylate transporters in mouse skeletal muscle.
    Takahashi K; Kitaoka Y; Matsunaga Y; Hatta H
    Physiol Rep; 2019 Sep; 7(17):e14224. PubMed ID: 31512405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Science and Translation of Lactate Shuttle Theory.
    Brooks GA
    Cell Metab; 2018 Apr; 27(4):757-785. PubMed ID: 29617642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lactate as a fulcrum of metabolism.
    Brooks GA
    Redox Biol; 2020 Aug; 35():101454. PubMed ID: 32113910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor Microenvironment: Lactic Acid Promotes Tumor Development.
    Gao Y; Zhou H; Liu G; Wu J; Yuan Y; Shang A
    J Immunol Res; 2022; 2022():3119375. PubMed ID: 35733921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.