These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 27740744)
1. Applying Ion Mobility-Mass Spectrometry Techniques for Explicitly Identifying the Products of Cu(II) Reactions of 2His-2Cys Motif Peptides. Vytla Y; Angel LA Anal Chem; 2016 Nov; 88(22):10925-10932. PubMed ID: 27740744 [TBL] [Abstract][Full Text] [Related]
2. The pH dependent Cu(II) and Zn(II) binding behavior of an analog methanobactin peptide. Sesham R; Choi D; Balaji A; Cheruku S; Ravichetti C; Alsharani AA; Nasani M; Angel LA Eur J Mass Spectrom (Chichester); 2013; 19(6):463-73. PubMed ID: 24378464 [TBL] [Abstract][Full Text] [Related]
3. Redox activity and multiple copper(I) coordination of 2His-2Cys oligopeptide. Choi D; Alshahrani AA; Vytla Y; Deeconda M; Serna VJ; Saenz RF; Angel LA J Mass Spectrom; 2015 Feb; 50(2):316-25. PubMed ID: 25800013 [TBL] [Abstract][Full Text] [Related]
4. The multiple conformational charge states of zinc(II) coordination by 2His-2Cys oligopeptide investigated by ion mobility-mass spectrometry, density functional theory and theoretical collision cross sections. Wagoner SM; Deeconda M; Cumpian KL; Ortiz R; Chinthala S; Angel LA J Mass Spectrom; 2016 Dec; 51(12):1120-1129. PubMed ID: 27594546 [TBL] [Abstract][Full Text] [Related]
5. Weak Acid-Base Interactions of Histidine and Cysteine Affect the Charge States, Tertiary Structure, and Zn(II)-Binding of Heptapeptides. Lin YF; Yousef EN; Torres E; Truong L; Zahnow JM; Donald CB; Qin Y; Angel LA J Am Soc Mass Spectrom; 2019 Oct; 30(10):2068-2081. PubMed ID: 31332742 [TBL] [Abstract][Full Text] [Related]
6. Coordination of copper(II) ions by the fragments of neuropeptide gamma containing D1, H9, H12 residues and products of copper-catalyzed oxidation. Jankowska E; Pietruszka M; Kowalik-Jankowska T Dalton Trans; 2012 Feb; 41(6):1683-94. PubMed ID: 22159001 [TBL] [Abstract][Full Text] [Related]
7. Interactions of Ni(II) and Cu(II) ions with the hydrolysis products of the C-terminal -ESHH- motif of histone H2A model peptides. Association of the stability of the complexes formed with the cleavage of the -E-S- bond. Mylonas M; Plakatouras JC; Hadjiliadis N Dalton Trans; 2004 Dec; (24):4152-60. PubMed ID: 15573167 [TBL] [Abstract][Full Text] [Related]
8. Complexation abilities of neuropeptide gamma toward copper(II) ions and products of metal-catalyzed oxidation. Pietruszka M; Jankowska E; Kowalik-Jankowska T; Szewczuk Z; Smużyńska M Inorg Chem; 2011 Aug; 50(16):7489-99. PubMed ID: 21770367 [TBL] [Abstract][Full Text] [Related]
9. Sequence-specific Cu(II)-dependent peptide bond hydrolysis: similarities and differences with the Ni(II)-dependent reaction. Belczyk-Ciesielska A; Zawisza IA; Mital M; Bonna A; Bal W Inorg Chem; 2014 May; 53(9):4639-46. PubMed ID: 24735221 [TBL] [Abstract][Full Text] [Related]
10. Binding of Divalent Metal Ions with Deprotonated Peptides: Do Gas-Phase Anions Parallel the Condensed Phase? Dunbar RC; Martens J; Berden G; Oomens J J Phys Chem A; 2018 Jun; 122(25):5589-5596. PubMed ID: 29847124 [TBL] [Abstract][Full Text] [Related]
12. Electrospray ionization in the study of the interactions between cytotoxic phosphino Cu(I) complexes and selected amino acids and GlyGlyHis peptide model. Tisato F; Peruzzo V; Zanchetta G; Tamburini S; Traldi P; Porchia M Eur J Mass Spectrom (Chichester); 2016; 22(5):275-287. PubMed ID: 27882894 [TBL] [Abstract][Full Text] [Related]
13. Copper binding and redox chemistry of the Aβ16 peptide and its variants: insights into determinants of copper-dependent reactivity. Yako N; Young TR; Cottam Jones JM; Hutton CA; Wedd AG; Xiao Z Metallomics; 2017 Mar; 9(3):278-291. PubMed ID: 28145544 [TBL] [Abstract][Full Text] [Related]
14. The role of terminal amino group and histidine at the fourth position in the metal ion binding of oligopeptides revisited: Copper(II) and nickel(II) complexes of glycyl-glycyl-glycyl-histamine and its N-Boc protected derivative. Jancsó A; Selmeczi K; Gizzi P; Nagy NV; Gajda T; Henry B J Inorg Biochem; 2011 Jan; 105(1):92-101. PubMed ID: 21134607 [TBL] [Abstract][Full Text] [Related]
15. Harnessing the flexibility of peptidic scaffolds to control their copper(II)-coordination properties: a potentiometric and spectroscopic study. Fragoso A; Lamosa P; Delgado R; Iranzo O Chemistry; 2013 Feb; 19(6):2076-88. PubMed ID: 23293061 [TBL] [Abstract][Full Text] [Related]
16. Multinuclear Metal-Binding Ability of the N-Terminal Region of Human Copper Transporter Ctr1: Dependence Upon pH and Metal Oxidation State. Nardella MI; Fortino M; Barbanente A; Natile G; Pietropaolo A; Arnesano F Front Mol Biosci; 2022; 9():897621. PubMed ID: 35601835 [TBL] [Abstract][Full Text] [Related]
17. Effect of pH and copper(II) on the conformation transitions of silk fibroin based on EPR, NMR, and Raman spectroscopy. Zong XH; Zhou P; Shao ZZ; Chen SM; Chen X; Hu BW; Deng F; Yao WH Biochemistry; 2004 Sep; 43(38):11932-41. PubMed ID: 15379533 [TBL] [Abstract][Full Text] [Related]
18. Raman spectroscopic study on the copper(II) binding mode of prion octapeptide and its pH dependence. Miura T; Hori-i A; Mototani H; Takeuchi H Biochemistry; 1999 Aug; 38(35):11560-9. PubMed ID: 10471308 [TBL] [Abstract][Full Text] [Related]
19. Copper(II) and zinc(II) ion binding properties of a MAP type branched ligand with histidines as surface functionalities. Kolozsi A; Vosekalna I; Martinek T; Larsen E; Gyurcsik B Dalton Trans; 2009 Aug; (29):5647-54. PubMed ID: 20449077 [TBL] [Abstract][Full Text] [Related]
20. Coordination abilities of neurokinin A and its derivative and products of metal-catalyzed oxidation. Kowalik-Jankowska T; Jankowska E; Szewczuk Z; Kasprzykowski F J Inorg Biochem; 2010 Aug; 104(8):831-42. PubMed ID: 20435351 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]