These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 27740769)
1. Bacteria Inactivation via X-ray-Induced UVC Radioluminescence: Toward in Situ Biofouling Prevention in Membrane Modules. Johnson TA; Rehak EA; Sahu SP; Ladner DA; Cates EL Environ Sci Technol; 2016 Nov; 50(21):11912-11921. PubMed ID: 27740769 [TBL] [Abstract][Full Text] [Related]
2. Inactivation of biofilm-bound Pseudomonas aeruginosa bacteria using UVC light emitting diodes (UVC LEDs). Gora SL; Rauch KD; Ontiveros CC; Stoddart AK; Gagnon GA Water Res; 2019 Mar; 151():193-202. PubMed ID: 30594087 [TBL] [Abstract][Full Text] [Related]
3. Correction to Bacteria Inactivation via X-ray-Induced UVC Radioluminescence: Toward in Situ Biofouling Prevention in Membrane Modules. Johnson TA; Rehak EA; Sahu SP; Ladner DA; Cates EL Environ Sci Technol; 2017 Jan; 51(1):751. PubMed ID: 27977151 [No Abstract] [Full Text] [Related]
4. Comparison of the performance of pulsed and continuous UVC-LED irradiation in the inactivation of bacteria. Nyangaresi PO; Qin Y; Chen G; Zhang B; Lu Y; Shen L Water Res; 2019 Jun; 157():218-227. PubMed ID: 30954697 [TBL] [Abstract][Full Text] [Related]
5. Reducing the Impacts of Biofouling in RO Membrane Systems through In Situ Low Fluence Irradiation Employing UVC-LEDs. Sperle P; Wurzbacher C; Drewes JE; Skibinski B Membranes (Basel); 2020 Dec; 10(12):. PubMed ID: 33322250 [TBL] [Abstract][Full Text] [Related]
6. Bench-scale evaluation of water disinfection by visible-to-UVC upconversion under high-intensity irradiation. Cates EL; Kim JH J Photochem Photobiol B; 2015 Dec; 153():405-11. PubMed ID: 26555644 [TBL] [Abstract][Full Text] [Related]
7. Biofouling control in water by various UVC wavelengths and doses. Lakretz A; Ron EZ; Mamane H Biofouling; 2010; 26(3):257-67. PubMed ID: 20024789 [TBL] [Abstract][Full Text] [Related]
8. Quantification and modeling of the response of surface biofilm growth to continuous low intensity UVC irradiation. Torkzadeh H; Zodrow KR; Bridges WC; Cates EL Water Res; 2021 Apr; 193():116895. PubMed ID: 33581401 [TBL] [Abstract][Full Text] [Related]
9. Achieving highly effective non-biofouling performance for polypropylene membranes modified by UV-induced surface graft polymerization of two oppositely charged monomers. Zhao YH; Zhu XY; Wee KH; Bai R J Phys Chem B; 2010 Feb; 114(7):2422-9. PubMed ID: 20121056 [TBL] [Abstract][Full Text] [Related]
10. Bacterial inactivation in water, DNA strand breaking, and membrane damage induced by ultraviolet-assisted titanium dioxide photocatalysis. Kim S; Ghafoor K; Lee J; Feng M; Hong J; Lee DU; Park J Water Res; 2013 Sep; 47(13):4403-11. PubMed ID: 23764591 [TBL] [Abstract][Full Text] [Related]
11. Biofilm growth under continuous UVC irradiation: Quantitative effects of growth conditions and growth time on intensity response parameters. Torkzadeh H; Cates EL Water Res; 2021 Nov; 206():117747. PubMed ID: 34666263 [TBL] [Abstract][Full Text] [Related]
12. Inactivation and potential reactivation of pathogenic Escherichia coli O157:H7 in apple juice following ultraviolet light exposure at three monochromatic wavelengths. Yin F; Zhu Y; Koutchma T; Gong J Food Microbiol; 2015 Apr; 46():329-335. PubMed ID: 25475303 [TBL] [Abstract][Full Text] [Related]
13. Demonstration and evaluation of germicidal UV-LEDs for point-of-use water disinfection. Chatterley C; Linden K J Water Health; 2010 Sep; 8(3):479-86. PubMed ID: 20375477 [TBL] [Abstract][Full Text] [Related]
14. Escherichia coli Inactivation by UVC-Irradiated C60: kinetics and mechanisms. Cho M; Snow SD; Hughes JB; Kim JH Environ Sci Technol; 2011 Nov; 45(22):9627-33. PubMed ID: 21999435 [TBL] [Abstract][Full Text] [Related]
15. Hydrogel-coated feed spacers in two-phase flow cleaning in spiral wound membrane elements: a novel platform for eco-friendly biofouling mitigation. Wibisono Y; Yandi W; Golabi M; Nugraha R; Cornelissen ER; Kemperman AJ; Ederth T; Nijmeijer K Water Res; 2015 Mar; 71():171-86. PubMed ID: 25616114 [TBL] [Abstract][Full Text] [Related]
16. Efficacy and safety assessment of a novel ultraviolet C device for treating corneal bacterial infections. Dean SJ; Petty A; Swift S; McGhee JJ; Sharma A; Shah S; Craig JP Clin Exp Ophthalmol; 2011 Mar; 39(2):156-63. PubMed ID: 21105972 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of a shoe sole UVC device to reduce pathogen colonization on floors, surfaces and patients. Rashid T; Poblete K; Amadio J; Hasan I; Begum K; Alam MJ; Garey KW J Hosp Infect; 2018 Jan; 98(1):96-101. PubMed ID: 29066141 [TBL] [Abstract][Full Text] [Related]
18. Breakthrough of ultraviolet light from various brands of fluorescent lamps: lethal effects on DNA repair-defective bacteria. Hartman PE; Biggley WH Environ Mol Mutagen; 1996; 27(4):306-13. PubMed ID: 8665873 [TBL] [Abstract][Full Text] [Related]
19. Microbial UV fluence-response assessment using a novel UV-LED collimated beam system. Bowker C; Sain A; Shatalov M; Ducoste J Water Res; 2011 Feb; 45(5):2011-9. PubMed ID: 21220143 [TBL] [Abstract][Full Text] [Related]
20. A novel approach to pathogen reduction in platelet concentrates using short-wave ultraviolet light. Mohr H; Steil L; Gravemann U; Thiele T; Hammer E; Greinacher A; Müller TH; Völker U Transfusion; 2009 Dec; 49(12):2612-24. PubMed ID: 19682340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]