These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 27740813)

  • 1. Chiral Magnetic Effect and Anomalous Transport from Real-Time Lattice Simulations.
    Müller N; Schlichting S; Sharma S
    Phys Rev Lett; 2016 Sep; 117(14):142301. PubMed ID: 27740813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QCD phase transition with chiral quarks and physical quark masses.
    Bhattacharya T; Buchoff MI; Christ NH; Ding HT; Gupta R; Jung C; Karsch F; Lin Z; Mawhinney RD; McGlynn G; Mukherjee S; Murphy D; Petreczky P; Renfrew D; Schroeder C; Soltz RA; Vranas PM; Yin H;
    Phys Rev Lett; 2014 Aug; 113(8):082001. PubMed ID: 25192088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chiral magnetic wave at finite baryon density and the electric quadrupole moment of the quark-gluon plasma.
    Burnier Y; Kharzeev DE; Liao J; Yee HU
    Phys Rev Lett; 2011 Jul; 107(5):052303. PubMed ID: 21867064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical Study of Nonperturbative Corrections to the Chiral Separation Effect in Quenched Finite-Density QCD.
    Puhr M; Buividovich PV
    Phys Rev Lett; 2017 May; 118(19):192003. PubMed ID: 28548526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic quantum simulation of U(N) and SU(N) non-Abelian lattice gauge theories.
    Banerjee D; Bögli M; Dalmonte M; Rico E; Stebler P; Wiese UJ; Zoller P
    Phys Rev Lett; 2013 Mar; 110(12):125303. PubMed ID: 25166816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Compactified Dimensions and Background Magnetic Fields on the Phase Structure of SU(N) Gauge Theories.
    D'Elia M; Mariti M
    Phys Rev Lett; 2017 Apr; 118(17):172001. PubMed ID: 28498687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluid-gravity model for the chiral magnetic effect.
    Kalaydzhyan T; Kirsch I
    Phys Rev Lett; 2011 May; 106(21):211601. PubMed ID: 21699286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous magnetization and anomalous Hall effect in an emergent Dice lattice.
    Dutta O; Przysiężna A; Zakrzewski J
    Sci Rep; 2015 Jun; 5():11060. PubMed ID: 26057635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abelian duality, confinement, and chiral-symmetry breaking in a SU(2) QCD-like theory.
    Unsal M
    Phys Rev Lett; 2008 Jan; 100(3):032005. PubMed ID: 18232971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomaly-Induced Dynamical Refringence in Strong-Field QED.
    Mueller N; Hebenstreit F; Berges J
    Phys Rev Lett; 2016 Aug; 117(6):061601. PubMed ID: 27541456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Higher-charge three-dimensional compact lattice Abelian-Higgs models.
    Bonati C; Pelissetto A; Vicari E
    Phys Rev E; 2020 Dec; 102(6-1):062151. PubMed ID: 33466077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lattice gauge theories in the presence of a linear gauge-symmetry breaking.
    Bonati C; Pelissetto A; Vicari E
    Phys Rev E; 2021 Jul; 104(1-1):014140. PubMed ID: 34412366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Demonstration of Confinement and Chiral Symmetry Breaking in SO(N_{c}) Gauge Theories.
    Csáki C; Gomes A; Murayama H; Telem O
    Phys Rev Lett; 2021 Dec; 127(25):251602. PubMed ID: 35029456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromagnetic Signatures of the Chiral Anomaly in Weyl Semimetals.
    Barnes E; Heremans JJ; Minic D
    Phys Rev Lett; 2016 Nov; 117(21):217204. PubMed ID: 27911555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the anomaly on the two-flavor QCD chiral phase transition.
    Chandrasekharan S; Mehta AC
    Phys Rev Lett; 2007 Oct; 99(14):142004. PubMed ID: 17930663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Symmetric Mass Generation in the 1+1 Dimensional Chiral Fermion 3-4-5-0 Model.
    Zeng M; Zhu Z; Wang J; You YZ
    Phys Rev Lett; 2022 May; 128(18):185301. PubMed ID: 35594085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chiral Spin Liquids in Triangular-Lattice SU(N) Fermionic Mott Insulators with Artificial Gauge Fields.
    Nataf P; Lajkó M; Wietek A; Penc K; Mila F; Läuchli AM
    Phys Rev Lett; 2016 Oct; 117(16):167202. PubMed ID: 27792381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chiral symmetry breaking in Abelian-projected SU(2) lattice gauge theory.
    Woloshyn RM
    Phys Rev D Part Fields; 1995 Jun; 51(11):6411-6416. PubMed ID: 10018405
    [No Abstract]   [Full Text] [Related]  

  • 19. Charge Redistribution from Anomalous Magnetovorticity Coupling.
    Hattori K; Yin Y
    Phys Rev Lett; 2016 Oct; 117(15):152002. PubMed ID: 27768344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chiral Instabilities and the Onset of Chiral Turbulence in QED Plasmas.
    Mace M; Mueller N; Schlichting S; Sharma S
    Phys Rev Lett; 2020 May; 124(19):191604. PubMed ID: 32469570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.