These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 27740821)

  • 1. Power Series Approximation for the Correlation Kernel Leading to Kohn-Sham Methods Combining Accuracy, Computational Efficiency, and General Applicability.
    Erhard J; Bleiziffer P; Görling A
    Phys Rev Lett; 2016 Sep; 117(14):143002. PubMed ID: 27740821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-consistent Kohn-Sham method based on the adiabatic-connection fluctuation-dissipation theorem and the exact-exchange kernel.
    Bleiziffer P; Krug M; Görling A
    J Chem Phys; 2015 Jun; 142(24):244108. PubMed ID: 26133411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resolution of identity approach for the Kohn-Sham correlation energy within the exact-exchange random-phase approximation.
    Bleiziffer P; Hesselmann A; Görling A
    J Chem Phys; 2012 Apr; 136(13):134102. PubMed ID: 22482535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability conditions for exact-exchange Kohn-Sham methods and their relation to correlation energies from the adiabatic-connection fluctuation-dissipation theorem.
    Bleiziffer P; Schmidtel D; Görling A
    J Chem Phys; 2014 Nov; 141(20):204107. PubMed ID: 25429933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the Short-Range Behavior of Correlated Pair Functions from the Adiabatic-Connection Fluctuation-Dissipation Theorem of Density-Functional Theory.
    Heßelmann A; Görling A
    J Chem Theory Comput; 2013 Oct; 9(10):4382-95. PubMed ID: 26589155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient self-consistent treatment of electron correlation within the random phase approximation.
    Bleiziffer P; Heßelmann A; Görling A
    J Chem Phys; 2013 Aug; 139(8):084113. PubMed ID: 24006980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward chemical accuracy at low computational cost: Density-functional theory with σ-functionals for the correlation energy.
    Trushin E; Thierbach A; Görling A
    J Chem Phys; 2021 Jan; 154(1):014104. PubMed ID: 33412877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaled σ-functionals for the Kohn-Sham correlation energy with scaling functions from the homogeneous electron gas.
    Erhard J; Fauser S; Trushin E; Görling A
    J Chem Phys; 2022 Sep; 157(11):114105. PubMed ID: 36137780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluctuation-dissipation theorem density-functional theory.
    Furche F; Van Voorhis T
    J Chem Phys; 2005 Apr; 122(16):164106. PubMed ID: 15945671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The calculation of adiabatic-connection curves from full configuration-interaction densities: two-electron systems.
    Teale AM; Coriani S; Helgaker T
    J Chem Phys; 2009 Mar; 130(10):104111. PubMed ID: 19292527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lieb-Oxford bound and pair correlation functions for density-functional methods based on the adiabatic-connection fluctuation-dissipation theorem.
    Erhard J; Fauser S; Kalaß S; Moerman E; Trushin E; Görling A
    Faraday Discuss; 2020 Dec; 224(0):79-97. PubMed ID: 32935700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous Attenuation of Both Self-Interaction Error and Nondynamic Correlation Error in Density Functional Theory: A Spin-Pair Distinctive Adiabatic-Connection Approximation.
    Zhang IY; Xu X
    J Phys Chem Lett; 2019 May; 10(10):2617-2623. PubMed ID: 31046289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasing the applicability of density functional theory. II. Correlation potentials from the random phase approximation and beyond.
    Verma P; Bartlett RJ
    J Chem Phys; 2012 Jan; 136(4):044105. PubMed ID: 22299859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dielectric Matrix Formulation of Correlation Energies in the Random Phase Approximation: Inclusion of Exchange Effects.
    Mussard B; Rocca D; Jansen G; Ángyán JG
    J Chem Theory Comput; 2016 May; 12(5):2191-202. PubMed ID: 26986444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interatomic methods for the dispersion energy derived from the adiabatic connection fluctuation-dissipation theorem.
    Tkatchenko A; Ambrosetti A; DiStasio RA
    J Chem Phys; 2013 Feb; 138(7):074106. PubMed ID: 23444996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double excitation effect in non-adiabatic time-dependent density functional theory with an analytic construction of the exchange-correlation kernel in the common energy denominator approximation.
    Gritsenko OV; Baerends EJ
    Phys Chem Chem Phys; 2009 Jun; 11(22):4640-6. PubMed ID: 19475185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kohn-Sham Density Functional Theory Electronic Structure Calculations with Linearly Scaling Computational Time and Memory Usage.
    Rudberg E; Rubensson EH; Sałek P
    J Chem Theory Comput; 2011 Feb; 7(2):340-50. PubMed ID: 26596156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond Kohn-Sham Approximation: Hybrid Multistate Wave Function and Density Functional Theory.
    Gao J; Grofe A; Ren H; Bao P
    J Phys Chem Lett; 2016 Dec; 7(24):5143-5149. PubMed ID: 27973892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic Excited States from the Adiabatic-Connection Formalism with Complete Active Space Wave Functions.
    Pastorczak E; Pernal K
    J Phys Chem Lett; 2018 Sep; 9(18):5534-5538. PubMed ID: 30192553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Connection between Hybrid Functionals and Importance of the Local Density Approximation.
    Mosquera MA; Borca CH; Ratner MA; Schatz GC
    J Phys Chem A; 2016 Mar; 120(9):1605-12. PubMed ID: 26901359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.