These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27740901)

  • 1. Laboratory-scale production of (S)-reticuline, an important intermediate of benzylisoquinoline alkaloids, using a bacterial-based method.
    Matsumura E; Nakagawa A; Tomabechi Y; Koyanagi T; Kumagai H; Yamamoto K; Katayama T; Sato F; Minami H
    Biosci Biotechnol Biochem; 2017 Feb; 81(2):396-402. PubMed ID: 27740901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bench-top fermentative production of plant benzylisoquinoline alkaloids using a bacterial platform.
    Nakagawa A; Minami H; Kim JS; Koyanagi T; Katayama T; Sato F; Kumagai H
    Bioeng Bugs; 2012 Jan; 3(1):49-53. PubMed ID: 22179145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of reticuline productivity from dopamine by using engineered Escherichia coli.
    Kim JS; Nakagawa A; Yamazaki Y; Matsumura E; Koyanagi T; Minami H; Katayama T; Sato F; Kumagai H
    Biosci Biotechnol Biochem; 2013; 77(10):2166-8. PubMed ID: 24096658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial production of plant benzylisoquinoline alkaloids.
    Minami H; Kim JS; Ikezawa N; Takemura T; Katayama T; Kumagai H; Sato F
    Proc Natl Acad Sci U S A; 2008 May; 105(21):7393-8. PubMed ID: 18492807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection of the optimal tyrosine hydroxylation enzyme for (S)-reticuline production in Escherichia coli.
    Nakagawa A; Nakamura S; Matsumura E; Yashima Y; Takao M; Aburatani S; Yaoi K; Katayama T; Minami H
    Appl Microbiol Biotechnol; 2021 Jul; 105(13):5433-5447. PubMed ID: 34181032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated pathway mining and selection of an artificial CYP79-mediated bypass to improve benzylisoquinoline alkaloid biosynthesis.
    Takenaka M; Kamasaka K; Daryong K; Tsuchikane K; Miyazawa S; Fujihana S; Hori Y; Vavricka CJ; Hosoyama A; Kawasaki H; Shirai T; Araki M; Nakagawa A; Minami H; Kondo A; Hasunuma T
    Microb Cell Fact; 2024 Jun; 23(1):178. PubMed ID: 38879464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bacterial platform for fermentative production of plant alkaloids.
    Nakagawa A; Minami H; Kim JS; Koyanagi T; Katayama T; Sato F; Kumagai H
    Nat Commun; 2011; 2():326. PubMed ID: 21610729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial production of novel sulphated alkaloids for drug discovery.
    Matsumura E; Nakagawa A; Tomabechi Y; Ikushiro S; Sakaki T; Katayama T; Yamamoto K; Kumagai H; Sato F; Minami H
    Sci Rep; 2018 May; 8(1):7980. PubMed ID: 29789647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an artificial biosynthetic pathway for biosynthesis of (S)-reticuline based on HpaBC in engineered Escherichia coli.
    Guo D; Kong S; Sun Y; Li X; Pan H
    Biotechnol Bioeng; 2021 Dec; 118(12):4635-4642. PubMed ID: 34427913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green Routes for the Production of Enantiopure Benzylisoquinoline Alkaloids.
    Ghirga F; Bonamore A; Calisti L; D'Acquarica I; Mori M; Botta B; Boffi A; Macone A
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29156609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fermentative production of plant benzylisoquinoline alkaloids in microbes.
    Minami H
    Biosci Biotechnol Biochem; 2013; 77(8):1617-22. PubMed ID: 23924710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae.
    Hawkins KM; Smolke CD
    Nat Chem Biol; 2008 Sep; 4(9):564-73. PubMed ID: 18690217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. (R,S)-tetrahydropapaveroline production by stepwise fermentation using engineered Escherichia coli.
    Nakagawa A; Matsuzaki C; Matsumura E; Koyanagi T; Katayama T; Yamamoto K; Sato F; Kumagai H; Minami H
    Sci Rep; 2014 Oct; 4():6695. PubMed ID: 25331563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast.
    Trenchard IJ; Siddiqui MS; Thodey K; Smolke CD
    Metab Eng; 2015 Sep; 31():74-83. PubMed ID: 26166409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endogenous formation of morphine in human cells.
    Poeaknapo C; Schmidt J; Brandsch M; Dräger B; Zenk MH
    Proc Natl Acad Sci U S A; 2004 Sep; 101(39):14091-6. PubMed ID: 15383669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial Factories for the Production of Benzylisoquinoline Alkaloids.
    Narcross L; Fossati E; Bourgeois L; Dueber JE; Martin VJJ
    Trends Biotechnol; 2016 Mar; 34(3):228-241. PubMed ID: 26775900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose.
    DeLoache WC; Russ ZN; Narcross L; Gonzales AM; Martin VJ; Dueber JE
    Nat Chem Biol; 2015 Jul; 11(7):465-71. PubMed ID: 25984720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mammalian morphine: de novo formation of morphine in human cells.
    Poeaknapo C
    Med Sci Monit; 2005 May; 11(5):MS6-17. PubMed ID: 15874902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biosynthesis of papaverine proceeds via (S)-reticuline.
    Han X; Lamshöft M; Grobe N; Ren X; Fist AJ; Kutchan TM; Spiteller M; Zenk MH
    Phytochemistry; 2010 Aug; 71(11-12):1305-12. PubMed ID: 20494383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and Characterization of O-methyltransferases Involved in the Biosynthesis of Glaucine in Glaucium flavum.
    Chang L; Hagel JM; Facchini PJ
    Plant Physiol; 2015 Oct; 169(2):1127-40. PubMed ID: 26297140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.