BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 27741250)

  • 1. Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae.
    Sato TK; Tremaine M; Parreiras LS; Hebert AS; Myers KS; Higbee AJ; Sardi M; McIlwain SJ; Ong IM; Breuer RJ; Avanasi Narasimhan R; McGee MA; Dickinson Q; La Reau A; Xie D; Tian M; Reed JL; Zhang Y; Coon JJ; Hittinger CT; Gasch AP; Landick R
    PLoS Genet; 2016 Oct; 12(10):e1006372. PubMed ID: 27741250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the xylose paradox in Saccharomyces cerevisiae through in vivo sugar signalomics of targeted deletants.
    Osiro KO; Borgström C; Brink DP; Fjölnisdóttir BL; Gorwa-Grauslund MF
    Microb Cell Fact; 2019 May; 18(1):88. PubMed ID: 31122246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crabtree/Warburg-like aerobic xylose fermentation by engineered Saccharomyces cerevisiae.
    Lee SB; Tremaine M; Place M; Liu L; Pier A; Krause DJ; Xie D; Zhang Y; Landick R; Gasch AP; Hittinger CT; Sato TK
    Metab Eng; 2021 Nov; 68():119-130. PubMed ID: 34592433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rewired cellular signaling coordinates sugar and hypoxic responses for anaerobic xylose fermentation in yeast.
    Myers KS; Riley NM; MacGilvray ME; Sato TK; McGee M; Heilberger J; Coon JJ; Gasch AP
    PLoS Genet; 2019 Mar; 15(3):e1008037. PubMed ID: 30856163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover.
    Parreiras LS; Breuer RJ; Avanasi Narasimhan R; Higbee AJ; La Reau A; Tremaine M; Qin L; Willis LB; Bice BD; Bonfert BL; Pinhancos RC; Balloon AJ; Uppugundla N; Liu T; Li C; Tanjore D; Ong IM; Li H; Pohlmann EL; Serate J; Withers ST; Simmons BA; Hodge DB; Westphall MS; Coon JJ; Dale BE; Balan V; Keating DH; Zhang Y; Landick R; Gasch AP; Sato TK
    PLoS One; 2014; 9(9):e107499. PubMed ID: 25222864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle.
    Kuyper M; Winkler AA; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2004 Mar; 4(6):655-64. PubMed ID: 15040955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PKA regulatory subunit Bcy1 couples growth, lipid metabolism, and fermentation during anaerobic xylose growth in Saccharomyces cerevisiae.
    Wagner ER; Nightingale NM; Jen A; Overmyer KA; McGee M; Coon JJ; Gasch AP
    PLoS Genet; 2023 Jul; 19(7):e1010593. PubMed ID: 37410771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unraveling the genetic basis of xylose consumption in engineered Saccharomyces cerevisiae strains.
    Dos Santos LV; Carazzolle MF; Nagamatsu ST; Sampaio NM; Almeida LD; Pirolla RA; Borelli G; Corrêa TL; Argueso JL; Pereira GA
    Sci Rep; 2016 Dec; 6():38676. PubMed ID: 28000736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xylose-induced dynamic effects on metabolism and gene expression in engineered Saccharomyces cerevisiae in anaerobic glucose-xylose cultures.
    Alff-Tuomala S; Salusjärvi L; Barth D; Oja M; Penttilä M; Pitkänen JP; Ruohonen L; Jouhten P
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):969-85. PubMed ID: 26454869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PKA and HOG signaling contribute separable roles to anaerobic xylose fermentation in yeast engineered for biofuel production.
    Wagner ER; Myers KS; Riley NM; Coon JJ; Gasch AP
    PLoS One; 2019; 14(5):e0212389. PubMed ID: 31112537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reassessment of requirements for anaerobic xylose fermentation by engineered, non-evolved Saccharomyces cerevisiae strains.
    Bracher JM; Martinez-Rodriguez OA; Dekker WJC; Verhoeven MD; van Maris AJA; Pronk JT
    FEMS Yeast Res; 2019 Jan; 19(1):. PubMed ID: 30252062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae.
    Kim SR; Skerker JM; Kang W; Lesmana A; Wei N; Arkin AP; Jin YS
    PLoS One; 2013; 8(2):e57048. PubMed ID: 23468911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation.
    Kuyper M; Hartog MM; Toirkens MJ; Almering MJ; Winkler AA; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2005 Feb; 5(4-5):399-409. PubMed ID: 15691745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response.
    Jin YS; Laplaza JM; Jeffries TW
    Appl Environ Microbiol; 2004 Nov; 70(11):6816-25. PubMed ID: 15528549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laboratory evolution for forced glucose-xylose co-consumption enables identification of mutations that improve mixed-sugar fermentation by xylose-fermenting Saccharomyces cerevisiae.
    Papapetridis I; Verhoeven MD; Wiersma SJ; Goudriaan M; van Maris AJA; Pronk JT
    FEMS Yeast Res; 2018 Sep; 18(6):. PubMed ID: 29771304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism.
    Kim SR; Park YC; Jin YS; Seo JH
    Biotechnol Adv; 2013 Nov; 31(6):851-61. PubMed ID: 23524005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved Xylose Metabolism by a
    Nijland JG; Shin HY; Boender LGM; de Waal PP; Klaassen P; Driessen AJM
    Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose.
    Matsushika A; Goshima T; Hoshino T
    Microb Cell Fact; 2014 Jan; 13():16. PubMed ID: 24467867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose.
    Wisselink HW; Toirkens MJ; del Rosario Franco Berriel M; Winkler AA; van Dijken JP; Pronk JT; van Maris AJ
    Appl Environ Microbiol; 2007 Aug; 73(15):4881-91. PubMed ID: 17545317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae.
    Hou J; Vemuri GN; Bao X; Olsson L
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):909-19. PubMed ID: 19221731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.