These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 27741250)

  • 1. Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae.
    Sato TK; Tremaine M; Parreiras LS; Hebert AS; Myers KS; Higbee AJ; Sardi M; McIlwain SJ; Ong IM; Breuer RJ; Avanasi Narasimhan R; McGee MA; Dickinson Q; La Reau A; Xie D; Tian M; Reed JL; Zhang Y; Coon JJ; Hittinger CT; Gasch AP; Landick R
    PLoS Genet; 2016 Oct; 12(10):e1006372. PubMed ID: 27741250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the xylose paradox in Saccharomyces cerevisiae through in vivo sugar signalomics of targeted deletants.
    Osiro KO; Borgström C; Brink DP; Fjölnisdóttir BL; Gorwa-Grauslund MF
    Microb Cell Fact; 2019 May; 18(1):88. PubMed ID: 31122246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crabtree/Warburg-like aerobic xylose fermentation by engineered Saccharomyces cerevisiae.
    Lee SB; Tremaine M; Place M; Liu L; Pier A; Krause DJ; Xie D; Zhang Y; Landick R; Gasch AP; Hittinger CT; Sato TK
    Metab Eng; 2021 Nov; 68():119-130. PubMed ID: 34592433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rewired cellular signaling coordinates sugar and hypoxic responses for anaerobic xylose fermentation in yeast.
    Myers KS; Riley NM; MacGilvray ME; Sato TK; McGee M; Heilberger J; Coon JJ; Gasch AP
    PLoS Genet; 2019 Mar; 15(3):e1008037. PubMed ID: 30856163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover.
    Parreiras LS; Breuer RJ; Avanasi Narasimhan R; Higbee AJ; La Reau A; Tremaine M; Qin L; Willis LB; Bice BD; Bonfert BL; Pinhancos RC; Balloon AJ; Uppugundla N; Liu T; Li C; Tanjore D; Ong IM; Li H; Pohlmann EL; Serate J; Withers ST; Simmons BA; Hodge DB; Westphall MS; Coon JJ; Dale BE; Balan V; Keating DH; Zhang Y; Landick R; Gasch AP; Sato TK
    PLoS One; 2014; 9(9):e107499. PubMed ID: 25222864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle.
    Kuyper M; Winkler AA; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2004 Mar; 4(6):655-64. PubMed ID: 15040955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PKA regulatory subunit Bcy1 couples growth, lipid metabolism, and fermentation during anaerobic xylose growth in Saccharomyces cerevisiae.
    Wagner ER; Nightingale NM; Jen A; Overmyer KA; McGee M; Coon JJ; Gasch AP
    PLoS Genet; 2023 Jul; 19(7):e1010593. PubMed ID: 37410771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unraveling the genetic basis of xylose consumption in engineered Saccharomyces cerevisiae strains.
    Dos Santos LV; Carazzolle MF; Nagamatsu ST; Sampaio NM; Almeida LD; Pirolla RA; Borelli G; Corrêa TL; Argueso JL; Pereira GA
    Sci Rep; 2016 Dec; 6():38676. PubMed ID: 28000736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xylose-induced dynamic effects on metabolism and gene expression in engineered Saccharomyces cerevisiae in anaerobic glucose-xylose cultures.
    Alff-Tuomala S; Salusjärvi L; Barth D; Oja M; Penttilä M; Pitkänen JP; Ruohonen L; Jouhten P
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):969-85. PubMed ID: 26454869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PKA and HOG signaling contribute separable roles to anaerobic xylose fermentation in yeast engineered for biofuel production.
    Wagner ER; Myers KS; Riley NM; Coon JJ; Gasch AP
    PLoS One; 2019; 14(5):e0212389. PubMed ID: 31112537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reassessment of requirements for anaerobic xylose fermentation by engineered, non-evolved Saccharomyces cerevisiae strains.
    Bracher JM; Martinez-Rodriguez OA; Dekker WJC; Verhoeven MD; van Maris AJA; Pronk JT
    FEMS Yeast Res; 2019 Jan; 19(1):. PubMed ID: 30252062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae.
    Kim SR; Skerker JM; Kang W; Lesmana A; Wei N; Arkin AP; Jin YS
    PLoS One; 2013; 8(2):e57048. PubMed ID: 23468911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation.
    Kuyper M; Hartog MM; Toirkens MJ; Almering MJ; Winkler AA; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2005 Feb; 5(4-5):399-409. PubMed ID: 15691745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response.
    Jin YS; Laplaza JM; Jeffries TW
    Appl Environ Microbiol; 2004 Nov; 70(11):6816-25. PubMed ID: 15528549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laboratory evolution for forced glucose-xylose co-consumption enables identification of mutations that improve mixed-sugar fermentation by xylose-fermenting Saccharomyces cerevisiae.
    Papapetridis I; Verhoeven MD; Wiersma SJ; Goudriaan M; van Maris AJA; Pronk JT
    FEMS Yeast Res; 2018 Sep; 18(6):. PubMed ID: 29771304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism.
    Kim SR; Park YC; Jin YS; Seo JH
    Biotechnol Adv; 2013 Nov; 31(6):851-61. PubMed ID: 23524005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved Xylose Metabolism by a
    Nijland JG; Shin HY; Boender LGM; de Waal PP; Klaassen P; Driessen AJM
    Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose.
    Matsushika A; Goshima T; Hoshino T
    Microb Cell Fact; 2014 Jan; 13():16. PubMed ID: 24467867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose.
    Wisselink HW; Toirkens MJ; del Rosario Franco Berriel M; Winkler AA; van Dijken JP; Pronk JT; van Maris AJ
    Appl Environ Microbiol; 2007 Aug; 73(15):4881-91. PubMed ID: 17545317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae.
    Hou J; Vemuri GN; Bao X; Olsson L
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):909-19. PubMed ID: 19221731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.