These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 27741392)

  • 21. Comparing the Pfizer Central Nervous System Multiparameter Optimization Calculator and a BBB Machine Learning Model.
    Urbina F; Zorn KM; Brunner D; Ekins S
    ACS Chem Neurosci; 2021 Jun; 12(12):2247-2253. PubMed ID: 34028255
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CNS drug development - lost in translation?
    Talevi A; Bellera CL; Di Ianni M; Gantner M; Bruno-Blanch LE; Castro EA
    Mini Rev Med Chem; 2012 Sep; 12(10):959-70. PubMed ID: 22420574
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Further optimization of the M1 PAM VU0453595: Discovery of novel heterobicyclic core motifs with improved CNS penetration.
    Panarese JD; Cho HP; Adams JJ; Nance KD; Garcia-Barrantes PM; Chang S; Morrison RD; Blobaum AL; Niswender CM; Stauffer SR; Conn PJ; Lindsley CW
    Bioorg Med Chem Lett; 2016 Aug; 26(15):3822-5. PubMed ID: 27173801
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Blood-Brain Barrier (BBB) Score.
    Gupta M; Lee HJ; Barden CJ; Weaver DF
    J Med Chem; 2019 Nov; 62(21):9824-9836. PubMed ID: 31603678
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Capter 11 Filtering in Drug Discovery.
    Lipinski CA
    Annu Rep Comput Chem; 2005; 1():155-168. PubMed ID: 32288696
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Is there a difference between leads and drugs? A historical perspective.
    Oprea TI; Davis AM; Teague SJ; Leeson PD
    J Chem Inf Comput Sci; 2001; 41(5):1308-15. PubMed ID: 11604031
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diazenyl derivatives as therapeutic and diagnostic agents acting on central nervous system.
    Kaur H; Yadav S; Narasimhan B
    Cent Nerv Syst Agents Med Chem; 2015; 15(1):42-51. PubMed ID: 25675399
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Start small and stay small. Minimizing attrition in the clinic with a focus on CNS therapeutics.
    Nienaber V
    Curr Top Med Chem; 2009; 9(18):1688-704. PubMed ID: 19929834
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs.
    Mahar Doan KM; Humphreys JE; Webster LO; Wring SA; Shampine LJ; Serabjit-Singh CJ; Adkison KK; Polli JW
    J Pharmacol Exp Ther; 2002 Dec; 303(3):1029-37. PubMed ID: 12438524
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Medicinal chemical properties of successful central nervous system drugs.
    Pajouhesh H; Lenz GR
    NeuroRx; 2005 Oct; 2(4):541-53. PubMed ID: 16489364
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple-parameter Optimization in Drug Discovery: Example of the 5-HT1B GPCR.
    Glen RC; Galloway WR; Spring DR; Liwiki G
    Mol Inform; 2016 Dec; 35(11-12):599-605. PubMed ID: 27870241
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Blood-brain barrier permeation models: discriminating between potential CNS and non-CNS drugs including P-glycoprotein substrates.
    Adenot M; Lahana R
    J Chem Inf Comput Sci; 2004; 44(1):239-48. PubMed ID: 14741033
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Challenges in the search for drugs to treat central nervous system disorders.
    Enna SJ; Williams M
    J Pharmacol Exp Ther; 2009 May; 329(2):404-11. PubMed ID: 19182069
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety.
    Meanwell NA
    Chem Res Toxicol; 2011 Sep; 24(9):1420-56. PubMed ID: 21790149
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of CNS activity of compound libraries using substructure analysis.
    Engkvist O; Wrede P; Rester U
    J Chem Inf Comput Sci; 2003; 43(1):155-60. PubMed ID: 12546548
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Positron emission tomography in CNS drug discovery and drug monitoring.
    Piel M; Vernaleken I; Rösch F
    J Med Chem; 2014 Nov; 57(22):9232-58. PubMed ID: 25144329
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A physiologically based modeling strategy during preclinical CNS drug development.
    Ball K; Bouzom F; Scherrmann JM; Walther B; Declèves X
    Mol Pharm; 2014 Mar; 11(3):836-48. PubMed ID: 24446829
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Positron emission tomography in central nervous system drug discovery and development.
    Cooper M; Metz J
    Neuroimaging Clin N Am; 2003 Nov; 13(4):851-6, xi. PubMed ID: 15024966
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The development of CNS-active LRRK2 inhibitors using property-directed optimisation.
    Kavanagh ME; Doddareddy MR; Kassiou M
    Bioorg Med Chem Lett; 2013 Jul; 23(13):3690-6. PubMed ID: 23721803
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Addressing central nervous system (CNS) penetration in drug discovery: basics and implications of the evolving new concept.
    Reichel A
    Chem Biodivers; 2009 Nov; 6(11):2030-49. PubMed ID: 19937839
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.