These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 27741460)
1. Volatile organic compounds released from Microcystis flos-aquae under nitrogen sources and their toxic effects on Chlorella vulgaris. Xu Q; Yang L; Yang W; Bai Y; Hou P; Zhao J; Zhou L; Zuo Z Ecotoxicol Environ Saf; 2017 Jan; 135():191-200. PubMed ID: 27741460 [TBL] [Abstract][Full Text] [Related]
2. Effects of phosphorus sources on volatile organic compound emissions from Microcystis flos-aquae and their toxic effects on Chlamydomonas reinhardtii. Zuo Z; Yang Y; Xu Q; Yang W; Zhao J; Zhou L Environ Geochem Health; 2018 Aug; 40(4):1283-1298. PubMed ID: 29264818 [TBL] [Abstract][Full Text] [Related]
3. Effects of nitrogen nutrients on the volatile organic compound emissions from Microcystis aeruginosa. Zuo Z; Yang L; Chen S; Ye C; Han Y; Wang S; Ma Y Ecotoxicol Environ Saf; 2018 Oct; 161():214-220. PubMed ID: 29885617 [TBL] [Abstract][Full Text] [Related]
4. New thermodynamic entropy calculation based approach towards quantifying the impact of eutrophication on water environment. Luo L; Duan N; Wang XC; Guo W; Ngo HH Sci Total Environ; 2017 Dec; 603-604():86-93. PubMed ID: 28623794 [TBL] [Abstract][Full Text] [Related]
5. Effect of light on the transformation of BDE-47 by living and autoclaved cultures of Microcystis flos-aquae and Chlorella vulgaris. Chalifour A; Chin WY; Leung PY; Cheung SG; Tam NF Chemosphere; 2019 Oct; 233():140-148. PubMed ID: 31170584 [TBL] [Abstract][Full Text] [Related]
6. Microalgae biofilm formation and antioxidant responses to stress induce by Lemna minor L., Chlorella vulgaris, and Aphanizomenon flos-aquae. Ugya AY; Ari HA; Hua X Ecotoxicol Environ Saf; 2021 Sep; 221():112468. PubMed ID: 34198191 [TBL] [Abstract][Full Text] [Related]
7. Allelopathic Effects of Myriophyllum aquaticum on Two Cyanobacteria of Anabaena flos-aquae and Microcystis aeruginosa. Wang H; Liu F; Luo P; Li Z; Zheng L; Wang H; Zou D; Wu J Bull Environ Contam Toxicol; 2017 Apr; 98(4):556-561. PubMed ID: 28184984 [TBL] [Abstract][Full Text] [Related]
8. Cyanobacteria blooms potentially enhance volatile organic compound (VOC) emissions from a eutrophic lake: Field and experimental evidence. Liu M; Wu T; Zhao X; Zan F; Yang G; Miao Y Environ Res; 2021 Nov; 202():111664. PubMed ID: 34256073 [TBL] [Abstract][Full Text] [Related]
9. Effect of propionamide on the growth of Microcystis flos-aquae colonies and the underlying physiological mechanisms. Wu X; Wu H; Wang S; Wang Y; Zhang R; Hu X; Ye J Sci Total Environ; 2018 Jul; 630():526-535. PubMed ID: 29486445 [TBL] [Abstract][Full Text] [Related]
10. Using stable isotope labeling to study the nitrogen metabolism in Anabaena flos-aquae growth and anatoxin biosynthesis. Qian ZY; Ma J; Sun CL; Li ZG; Xian QM; Gong TT; Xu B Water Res; 2017 Dec; 127():223-229. PubMed ID: 29055827 [TBL] [Abstract][Full Text] [Related]
11. Effects of Ginkgo biloba extract on growth, photosynthesis, and photosynthesis-related gene expression in Microcystis flos-aquae. Shi Y; Shen A; Shao L; He P Environ Sci Pollut Res Int; 2022 Dec; 29(58):87446-87455. PubMed ID: 35810242 [TBL] [Abstract][Full Text] [Related]
12. Enantioselective effects of the fungicide metconazole on photosynthetic activity in Microcystis flos-aquae. Li L; Huang P; Li J Ecotoxicol Environ Saf; 2021 Mar; 211():111894. PubMed ID: 33472108 [TBL] [Abstract][Full Text] [Related]
13. Effect of florfenicol and thiamphenicol exposure on the photosynthesis and antioxidant system of Microcystis flos-aquae. Wang M; Zhang Y; Guo P Aquat Toxicol; 2017 May; 186():67-76. PubMed ID: 28257901 [TBL] [Abstract][Full Text] [Related]
14. Effect of Small-Scale Turbulence on the Physiology and Morphology of Two Bloom-Forming Cyanobacteria. Xiao Y; Li Z; Li C; Zhang Z; Guo J PLoS One; 2016; 11(12):e0168925. PubMed ID: 28036368 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of Scenedesmus quadricauda on Microcystis flos-aquae. Qiu Y; Wang Z; Liu F; Liu J; Tan K; Ji R Appl Microbiol Biotechnol; 2019 Jul; 103(14):5907-5916. PubMed ID: 31115631 [TBL] [Abstract][Full Text] [Related]
16. Effects of streptomycin on growth of algae Chlorella vulgaris and Microcystis aeruginosa. Qian H; Li J; Pan X; Sun Z; Ye C; Jin G; Fu Z Environ Toxicol; 2012 Mar; 27(4):229-37. PubMed ID: 20725941 [TBL] [Abstract][Full Text] [Related]
17. The effect of plant extracts on growth and photosynthetic fluorescence characteristics of Microcystis flos-aquae. Shi Y; Shen A; Tan M; He P; Shao L Water Sci Technol; 2020 Sep; 82(6):1102-1110. PubMed ID: 33055400 [TBL] [Abstract][Full Text] [Related]
18. Interspecific competition between Microcystis aeruginosa and Anabaena flos-aquae from Taihu Lake, China. Zhang XW; Fu J; Song S; Zhang P; Yang XH; Zhang LR; Luo Y; Liu CH; Zhu HL Z Naturforsch C J Biosci; 2014; 69(1-2):53-60. PubMed ID: 24772823 [TBL] [Abstract][Full Text] [Related]
19. Phosphorus accelerate the sulfur cycle by promoting the release of malodorous volatile organic sulfur compounds from Microcystis in freshwater lakes. Deng X; Ruan L; Ren R; Tao M; Zhang J; Wang L; Yan Y; Wen X; Yang X; Xie P Sci Total Environ; 2022 Nov; 845():157280. PubMed ID: 35835193 [TBL] [Abstract][Full Text] [Related]
20. Effect of erythromycin exposure on the growth, antioxidant system and photosynthesis of Microcystis flos-aquae. Wan J; Guo P; Peng X; Wen K J Hazard Mater; 2015; 283():778-86. PubMed ID: 25464321 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]